Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biophotonics ; 17(7): e202400083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695386

RESUMO

One of the diagnostic tool for clinical evaluation and disease diagnosis is a pulse waveform analysis. High fidelity radial artery pulse waveforms have been investigated in clinical research to compute central aortic pressure, which has been demonstrated to be predictive of cardiovascular diseases. The radial artery must be inspected from several angles in order to obtain the best pulse waveform for estimate and diagnosis. In this study, we present the design and experimental testing of an optical sensor based on Fiber Bragg Gratings (FBG). A 3D printed device along with the FBG is used to measure the radial artery pulses. The proposed sensor is used for the purpose of quantifying the radial artery pulse waveform across major pulse position point. The suggested optical sensing system can measure the pulse signal with good accuracy. The main characteristic parameters of the pulse can then be retrieved from the processed signal for their use in clinical applications. By conducting experiments under the direction of medical experts, the pulse signals are measured. In order to experimentally validate the sensor, we used it to detect the pulse waveforms at Guan position of the wrist's radial artery in accordance with the diagnostic standards. The findings show that combining optical technologies for physiological monitoring and radial artery pulse waveform monitoring using FBG in clinical applications are highly feasible.


Assuntos
Artéria Radial , Artéria Radial/fisiologia , Humanos , Pressão Sanguínea , Fibras Ópticas , Desenho de Equipamento , Fenômenos Ópticos , Determinação da Pressão Arterial/instrumentação , Determinação da Pressão Arterial/métodos , Dispositivos Ópticos
2.
Biomed Tech (Berl) ; 68(3): 251-262, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-36710542

RESUMO

A theoretical investigation of multi-layer Bragg Reflector (BR) structure to design highly sensitive temperature sensor is proposed to measure the temperature over a wide range. Characteristic-Matrix (CM) mathematical tool is used to design and analyse the proposed temperature sensor. A 1D Distributed Bragg Reflector multi-layer structure is used to design and analyse the sensing characteristics of the proposed sensor. Periodic modulation in the Refractive-Index (RI) of the two materials, high and low, forms DBR multi-layer structure. Germanium and air are used as the two alternate materials of BR for high and low dielectric layers respectively. Parameters of many semiconductor materials, including germanium, varies with temperature. Here we have considered RI variation of germanium with the temperature to model and design the proposed sensor. A defect layer is introduced at the center of multi-layer structure to obtain the resonating mode for an incident electromagnetic wave. The sensor can detect temperature over a wide range from 100 to 550 K. A resonating mode, shifting towards different wavelength region is observed for the temperature variations. The influence of increase in the DBR layers (N) and defect cavity geometrical length (lD) is studied. The obtained results conclude that the cavity defect length and BR layers affects the sensing parameters of the designed sensor. The obtained RI sensitivity, Q-factor, temperature sensitivity and detection limit of the sensor are 2.323 µm/RIU, 115,000, 1.18 nm/K and 9.024 × 10-6 RIU respectively. Theoretically obtained transmission spectrum was validated using Monte Carlo simulation.


Assuntos
Germânio , Temperatura , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA