Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339342

RESUMO

Alterations in microRNA (miRNA) expression have been reported in different cancers. We assessed the expression of 754 oncology-related miRNAs in esophageal adenocarcinoma (EAC) samples and evaluated their correlations with clinical parameters. We found that miR-221 and 483-3p were consistently upregulated in EAC patients vs. controls (Wilcoxon signed-rank test: miR-221 p < 0.0001; miR-483-3p p < 0.0001). Kaplan-Meier analysis showed worse cancer-related survival among all EAC patients expressing high miR-221 or miR-483-3p levels (log-rank p = 0.0025 and p = 0.0235, respectively). Higher miR-221 or miR-483-3p levels also correlated with advanced tumor stages (Mann-Whitney p = 0.0195 and p = 0.0085, respectively), and overexpression of miR-221 was associated with worse survival in low-risk EAC patients. Moreover, a significantly worse outcome was associated with the combined overexpression of miR-221 and miR-483-3p (log-rank p = 0.0410). To identify target genes affected by miRNA overexpression, we transfected the corresponding mimic RNA (miRVANA) for either miR-221 or miR-483-3p in a well-characterized esophageal adenocarcinoma cell line (OE19) and performed RNA-seq analysis. In the miRNA-overexpressing cells, we discovered a convergent dysregulation of genes linked to apoptosis, ATP synthesis, angiogenesis, and cancer progression, including a long non-coding RNA associated with oncogenesis, i.e., MALAT1. In conclusion, dysregulated miRNA expression, especially overexpression of miR-221 and 483-3p, was found in EAC samples. These alterations were connected with a lower cancer-specific patient survival, suggesting that these miRNAs could be useful for patient stratification and prognosis.

2.
Biomolecules ; 13(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-38002306

RESUMO

Visceral sarcomas are a rare malignant subgroup of soft tissue sarcomas (STSs). STSs, accounting for 1% of all adult tumors, are derived from mesenchymal tissues and exhibit a wide heterogeneity. Their rarity and the high number of histotypes hinder the understanding of tumor development mechanisms and negatively influence clinical outcomes and treatment approaches. Although some STSs (~20%) have identifiable genetic markers, as specific mutations or translocations, most are characterized by complex genomic profiles. Thus, identification of new therapeutic targets and development of personalized therapies are urgent clinical needs. Although cell lines are useful for preclinical investigations, more reliable preclinical models are required to develop and test new potential therapies. Here, we provide an overview of the available in vitro and in vivo models of visceral sarcomas, whose gene signatures are still not well characterized, to highlight current challenges and provide insights for future studies.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/genética , Linhagem Celular
3.
Diagnostics (Basel) ; 13(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36673024

RESUMO

Primary cardiac sarcomas are considered rare malignant entities associated with poor prognosis. In fact, knowledge regarding their gene signature and possible treatments is still limited. In our study, whole-transcriptome sequencing on formalin-fixed paraffin-embedded (FFPE) samples from one cardiac osteosarcoma and one cardiac leiomyosarcoma was performed, to investigate their mutational profiles and to highlight differences and/or similarities to other cardiac histotypes. Both cases have been deeply detailed from a pathological point of view. The osteosarcoma sample presented mutations involving ATRX, ERCC5, and COL1A1, while the leiomyosarcoma case showed EXT2, DNM2, and PSIP1 alterations. Altered genes, along with the most differentially expressed genes in the leiomyosarcoma or osteosarcoma sample versus the cardiac angiosarcomas and intimal sarcomas (e.g., YAF2, PAK5, and CRABP1), appeared to be associated with cell growth, proliferation, apoptosis, and the repair of DNA damage, which are key mechanisms involved in tumorigenesis. Moreover, a distinct gene expression profile was detected in the osteosarcoma sample when compared to other cardiac sarcomas. For instance, WIF1, a marker of osteoblastic differentiation, was upregulated in our bone tumor. These findings pave the way for further studies on these entities, in order to identify targeted therapies and, therefore, improve patients' prognoses.

4.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137511

RESUMO

Angiosarcomas (ASs) are rare malignant vascular entities that can affect several regions in our body, including the heart. Cardiac ASs comprise 25-40% of cardiac sarcomas and can cause death within months of diagnosis. Thus, our aim was to identify potential differences and/or similarities between cardiac and extra-cardiac ASs to enhance targeted therapies and, consequently, patients' prognosis. Whole-transcriptome analysis of three cardiac and eleven extra-cardiac non-cutaneous samples was performed to investigate differential gene expression and mutational events between the two groups. The gene signature of cardiac and extra-cardiac non-cutaneous ASs was also compared to that of cutaneous angiosarcomas (n = 9). H/N/K-RAS and TP53 alterations were more recurrent in extra-cardiac ASs, while POTE-gene family overexpression was peculiar to cardiac ASs. Additionally, in vitro functional analyses showed that POTEH upregulation conferred a growth advantage to recipient cells, partly supporting the cardiac AS aggressive phenotype and patients' scarce survival rate. These features should be considered when investigating alternative treatments.

5.
Biomolecules ; 12(11)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421692

RESUMO

The Serum Response Factor (SRF) is a transcription factor that regulates the expression of a wide set of genes involved in cell proliferation, migration, cytoskeletal organization and myogenesis. Accumulating evidence suggests that SRF may play a role in carcinogenesis and tumor progression in various neoplasms, where it is often involved in different fusion events. Here we investigated SRF rearrangements in soft tissue tumors, along with a gene expression profile analysis to gain insight into the oncogenic mechanism driven by SRF fusion. Whole transcriptome analysis of cell lines transiently overexpressing the SRF::E2F1 chimeric transcript uncovered the specific gene expression profile driven by the aberrant gene fusion, including overexpression of SRF-dependent target genes and of signatures related to myogenic commitment, inflammation and immune activation. This result was confirmed by the analysis of two cases of myoepitheliomas harboring SRF::E2F1 fusion with respect to EWSR1-fusion positive tumors. The recognition of the specific gene signature driven by SRF rearrangement in soft tissue tumors could aid the molecular classification of this rare tumor entity and support therapeutic decisions.


Assuntos
Fator de Resposta Sérica , Neoplasias de Tecidos Moles , Humanos , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Neoplasias de Tecidos Moles/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Músculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA