Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Euro Surveill ; 22(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28749335

RESUMO

We evaluated a widely used culture-based method for detection of livestock-associated meticillin-resistant Staphylococcus aureus (LA-MRSA) in samples collected from pigs and the environment inside pig stables in Denmark and Norway. Selective enrichment in tryptic soy broth containing cefoxitin and aztreonam led to a high ratio of false-negative results (26%; 57/221). On this basis, we recommend reconsidering the use of selective enrichment for detection of LA-MRSA in animal and environmental samples.


Assuntos
Técnicas de Cultura/métodos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/diagnóstico , Doenças dos Suínos/microbiologia , Animais , Dinamarca , Gado , Noruega , Sensibilidade e Especificidade , Infecções Estafilocócicas/veterinária , Sus scrofa , Suínos
2.
Clin Infect Dis ; 63(11): 1431-1438, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516381

RESUMO

BACKGROUND: Emerging livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) persist in livestock populations and represent a reservoir for transmission to humans. Understanding the routes of introduction and further transmission is crucial to control this threat to human health. METHODS: All reported cases of livestock-associated MRSA (CC398) in humans and pigs in Norway between 2008 and 2014 were included. Data were collected during an extensive outbreak investigation, including contact tracing and stringent surveillance. Whole-genome sequencing of isolates from all human cases and pig farms was performed to support and expand the epidemiological findings. The national strategy furthermore included a "search-and-destroy" policy at the pig farm level. RESULTS: Three outbreak clusters were identified, including 26 pig farms, 2 slaughterhouses, and 36 humans. Primary introductions likely occurred by human transmission to 3 sow farms with secondary transmission to other pig farms, mainly through animal trade and to a lesser extent via humans or livestock trucks. All MRSA CC398 isolated from humans without an epidemiological link to the outbreaks were genetically distinct from isolates within the outbreak clusters indicating limited dissemination to the general population. CONCLUSIONS: This study identified preventable routes of MRSA CC398 introduction and transmission: human occupational exposure, trade of pigs and livestock transport vehicles. These findings are essential for keeping pig populations MRSA free and, from a "One Health" perspective, preventing pig farms from becoming reservoirs for MRSA transmission to humans.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/transmissão , Doenças dos Suínos/epidemiologia , Suínos/microbiologia , Matadouros , Animais , Surtos de Doenças/prevenção & controle , Reservatórios de Doenças , Fazendas , Feminino , Saúde Global , Humanos , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/classificação , Noruega/epidemiologia , Exposição Ocupacional , Filogenia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Sus scrofa , Doenças dos Suínos/microbiologia , Doenças dos Suínos/transmissão
3.
BMC Vet Res ; 10: 284, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472551

RESUMO

BACKGROUND: Influenza A(H1N1)pdm09 virus infection in Norwegian pigs was largely subclinical. This study tested the hypothesis that the infection causes negligible impact on pigs' growth performance in terms of feed conversion efficiency, daily feed intake, daily growth, age on reaching 100 kg bodyweight and overall feed intake. A sample of 1955 pigs originating from 43 breeding herds was classified into five infection status groups; seronegative pigs (n = 887); seropositive pigs (n = 874); pigs positive for virus at bodyweight between 33 kg and 60 kg (n = 123); pigs positive for virus at bodyweight between 61 kg and 80 kg (n = 34) and pigs positive for virus at bodyweight between 81 kg and 100 kg (n = 37). Each pig had daily recordings of feed intake and bodyweight from 33 kg to 100 kg. Marginal effects of the virus infection on the outcomes were estimated by multi-level linear regression, which accounted for known fixed effects (breed, birthdate, average daily feed intake and growth phase) and random effects (cluster effects of pig and herd). RESULTS: The seropositive and virus positive pigs had decreased (P value<0.05) growth performance compared to seronegative pigs even though feed intake was not decreased. Reduced feed conversion efficiency led to lower average daily growth, additional feed requirement and longer time needed to reach the 100 kg bodyweight. The effects were more marked (P value<0.03) in pigs infected at a younger age and lasted a longer period. Despite increased feed intake observed, their growth rates were lower and they took more time to reach 100 kg bodyweight compared to the seronegative pigs. CONCLUSION: Our study rejected the null hypothesis that the virus infection had negligible adverse effects on growth performance of Norwegian pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Infecções Assintomáticas , Peso Corporal , Estudos Longitudinais , Masculino , Noruega , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Suínos/crescimento & desenvolvimento , Suínos/virologia
4.
Porcine Health Manag ; 7(1): 37, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001280

RESUMO

BACKGROUND: Mycoplasma hyopneumoniae (Mhyo) is the causative agent of enzootic pneumonia in pigs which adversely affects animal health and welfare, in addition to causing considerable economical losses. This paper presents the implementation of the national Mhyo eradication program in Norway, the subsequent population wide surveillance and documentation on the current freedom from Mhyo in the Norwegian pig population. In 1994, the Board of The Norwegian Pig Health Service decided on conducting a national surveillance and eradication program for Mhyo. The program aimed for population wide freedom from Mhyo, based on serological surveillance. A partial depopulation program was initiated in all Mhyo positive farrow-to-feed and farrow-to-finish herds. Total depopulation was performed in all positive finisher herds. RESULTS: From 1994 to 2009, a total of 138,635 pigs in 3211 herds were serologically tested for the presence of antibodies against Mhyo. Of these, 5538 (4%) individual samples and 398 (12.4%) of the herds were defined as positive. In 2009, the Norwegian pig population was declared free from Mhyo, and has been so since then. From 2009 through 2019, a total of 44,228 individual serum samples have been analyzed for the presence of antibodies against Mhyo and found negative in the National surveillance program. CONCLUSION: Eradication of Mhyo infections has resulted in improved health and welfare of the Norwegian pig population. The success of the strategy is based on numerous factors, such as moderate to low prevalence of the agent, well documented and effective eradication protocols, accurate diagnostic tests, relatively small herds, low herd density in most parts of the country and negligible import of live pigs. In addition, economic benefit due to a premium on pigs marketed from herds free from Mhyo, a well-structured commercial pig population, and finally, the loyalty and significant effort of farmers, abattoir employees and veterinarians were crucial factors. To maintain the infection-free status at national level, a continuous alertness is required in the future to discover possible Mhyo infections and ensure rapid sampling and diagnostics. Any findings of Mhyo positive pig herds in Norway will result in immediate eradication.

5.
Front Microbiol ; 12: 729637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566934

RESUMO

Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a disease of major impact on pig health, welfare, and productivity globally. Serovar 8 (APP) is the predominant clinical serovar in Norway and the United Kingdom (UK), and has been isolated from clinical cases in Denmark. The primary objective of this study was to characterize the genetic variability of isolates of A. pleuropneumoniae APP8 in the Norwegian population. The secondary objectives were to determine the within-host variability of APP8; to compare the APP8 bacterial populations in Norway, Denmark, and the UK, including antimicrobial resistance (AMR) gene profiles and to assess the effect of national differences in antimicrobial drug use and restricted animal movement on the occurrence of resistance. Isolates of APP8 from the UK (n=67), Denmark (n=22), and Norway (n=123) collected between 1983 and 2020 were compared using whole genome sequencing. To investigate genetic variability within individual hosts, an additional 104 APP8 isolates from the lungs of six Norwegian pigs were compared. Very low within-host variation was observed (≤ 2 single nucleotide polymorphisms). The phylogeny of 123 Norwegian APP8 isolates from 76 herds revealed some within-herd genetic variation, but substantial geographical clustering. When inferring the relatedness of the three international APP8 collections, the topology highlighted the existence of two distinct monophyletic branches characterized by the Norwegian and UK isolates, respectively. Three Danish isolates were scattered across the UK branch, whereas the remaining 19 Danish isolates clustered in two monophyletic groups nested in the Norwegian branch. Coalescence analysis, performed to estimate the divergences from a common ancestor, indicated a last common ancestor several centuries ago. The phylogenetic analyses also revealed striking differences in occurrence of AMR genes, as these were 23-times more prevalent among the UK isolates than among the Norwegian isolates. An increased understanding of the effects of population strategies is helpful in surveillance and control of infectious diseases.

6.
Antibiotics (Basel) ; 9(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333974

RESUMO

Norway has a favourable situation with regard to health status and antimicrobial usage in the pig production sector. However, one of the major disease-causing agents in the commercial pig population is Actinobacillus pleuropneumoniae (APP). In some herds, APP eradication has been performed by using enrofloxacin in combination with a partial herd depopulation. The aim of this study was to investigate the long-term effects of a single treatment event with enrofloxacin on the occurrence of quinolone resistant Escherichia coli (QREC). The study was designed as a retrospective case/control study, where the herds were selected based on treatment history. Faecal samples were taken from sows, gilts, fattening pigs and weaners for all herds where available. A semi-quantitative culturing method was used to identify the relative quantity of QREC in the faecal samples. A significant difference in overall occurrence and relative quantity of QREC was identified between the case and control herds, as well as between each animal age group within the case/control groups. The results indicate that a single treatment event with enrofloxacin significantly increased the occurrence of QREC in the herd, even years after treatment and with no subsequent exposure to quinolones.

7.
Acta Vet Scand ; 62(1): 35, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580726

RESUMO

BACKGROUND: Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky´s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. RESULTS: The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds. Actinobacillus pleuropneumoniae serovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion to A. pleuropneumoniae antibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. CONCLUSION: The main etiological pathogen found during acute outbreaks of respiratory disease was A. pleuropneumoniae serovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and only A. pleuropneumoniae serovar 8 was identified. Co-infections were not found to impact disease development.


Assuntos
Doença Aguda/epidemiologia , Surtos de Doenças/veterinária , Doenças Respiratórias/veterinária , Doenças dos Suínos/epidemiologia , Animais , Noruega/epidemiologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/microbiologia , Doenças Respiratórias/virologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/virologia
8.
Front Microbiol ; 10: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800102

RESUMO

Farm animals have been identified as an emerging reservoir for transmission of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to humans. The low incidence of MRSA in humans and farm animals in Norway has led to the implementation of a national strategy of surveillance and control of LA-MRSA aiming to prevent livestock becoming a domestic source of MRSA to humans. In 2015, MRSA clonal complex 1 spa-type t177 was identified in nine Norwegian pig herds in two neighboring counties. An outbreak investigation was undertaken, and measures of control through eradication were imposed. We performed a register-based cohort study including pig herds and MRSA-positive persons in Norway between 2008 and 2016 to investigate the livestock-association of MRSA CC1, the transmission of the outbreak strain to humans before and after control measures, and the effect of control measures imposed. Data from the Norwegian Surveillance System of Communicable Diseases were merged with data collected through outbreak investigations for LA-MRSA, the National Registry and the Norwegian Register for Health Personnel. Whole-genome sequencing was performed on isolates from livestock and humans identified through contact tracing, in addition to t177 and t127 isolates diagnosed in persons in the same counties. It is likely that a farm worker introduced MRSA CC1 to a sow farm, and further transmission to eight fattening pig farms through trade of live pigs confirmed the potential for livestock association of this MRSA type. The outbreak strain formed a distinct phylogenetic cluster which in addition to the pig farms included one sheep herd and five exposed persons. None of the investigated isolates from possible cases without direct contact to the MRSA positive farms were phylogenetically related to the outbreak strain. Moreover, isolates of t177 or t127 from healthcare and community-acquired cases were not closely related to the outbreak cluster. Eradication measures imposed were effective in eliminating MRSA t177 from the positive pig holdings, and the outbreak strain was not detected in the national pig population or in persons from these counties after control measures.

9.
Prev Vet Med ; 110(3-4): 429-34, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23490143

RESUMO

Influenza A viruses cause respiratory infection in humans and pigs, and some serotypes can be transmitted between these species. The emergence of influenza A(H1N1)pdm09 virus infections in the spring of 2009 quickly led to a worldwide pandemic in humans, with subsequent introduction of the virus to pig populations. Following a widespread infection in the human population in Norway, influenza A(H1N1)pdm09 virus was introduced to the influenza A naïve Norwegian pig population, and within a few months pigs in more than one third of Norwegian swine herds had antibodies against the virus. A cross-sectional study was performed on all swine nucleus and multiplier herds in Norway to analyze risk factors for introduction of infection, and the preventive effects of recommended biosecurity practices. A surveillance program provided information on infection status of the study herds, and a questionnaire was administered to all 118 nucleus and multiplier herds to collect information on herd variables. The surveillance program revealed that pigs in 42% of the herds had antibodies against influenza A(H1N1)pdm09 virus. The incidence of serologically positive pigs was similar in both multiplier herds (41%) and closed nucleus herds (43%). Multivariable logistic regression showed that presence of farm staff with influenza-like illness (ILI) (OR=4.15, CI 1.5-11.4, p=0.005) and herd size (OR=1.01, CI 1-1.02, p=0.009) were risk factors for infection. The rapid and widespread seroconversion for antibodies against influenza A(H1N1)pdm09 virus in the Norwegian pig population can be explained by the emergence of a novel virus that is readily transmitted between people and swine in a largely susceptible population of humans, and an entirely naïve population of pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/transmissão , Animais , Anticorpos Antivirais/sangue , Estudos Transversais , Humanos , Incidência , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Modelos Logísticos , Modelos Biológicos , Noruega/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Fatores de Risco , Inquéritos e Questionários , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/transmissão , Zoonoses/virologia
10.
Influenza Res Treat ; 2011: 163745, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23074653

RESUMO

The Norwegian pig population has been free from influenza viruses until 2009. The pandemic influenza outbreak during the autumn 2009 provided an opportunity to study the clinical impact of this infection in an entirely naïve pig population. This paper describes the results of a case-control study on the clinical impact of pandemic influenza (H1N1) 2009 infection in the nucleus and multiplier herds in Norway. The infection spread readily and led to seroconversion of 42% of the Norwegian nucleus and multiplier herds within a year. Positive and negative herds were identified based on surveillance data from the Norwegian Veterinary Institute. Telephone interviews were conducted with pig herd owners or managers between November 2010 and January 2011. Pigs with clinical signs were reported from 40% of the case herds with varying morbidity and duration of respiratory disease and reduced reproductive performance. Clinical signs were reported in all age groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA