Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 569(7756): 433-437, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30995674

RESUMO

CRISPR-Cas base-editor technology enables targeted nucleotide alterations, and is being increasingly used for research and potential therapeutic applications1,2. The most widely used cytosine base editors (CBEs) induce deamination of DNA cytosines using the rat APOBEC1 enzyme, which is targeted by a linked Cas protein-guide RNA complex3,4. Previous studies of the specificity of CBEs have identified off-target DNA edits in mammalian cells5,6. Here we show that a CBE with rat APOBEC1 can cause extensive transcriptome-wide deamination of RNA cytosines in human cells, inducing tens of thousands of C-to-U edits with frequencies ranging from 0.07% to 100% in 38-58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, and 5' and 3' untranslated region mutations. We engineered two CBE variants bearing mutations in rat APOBEC1 that substantially decreased the number of RNA edits (by more than 390-fold and more than 3,800-fold) in human cells. These variants also showed more precise on-target DNA editing than the wild-type CBE and, for most guide RNAs tested, no substantial reduction in editing efficiency. Finally, we show that an adenine base editor7 can also induce transcriptome-wide RNA edits. These results have implications for the use of base editors in both research and clinical settings, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Edição de RNA , Especificidade por Substrato/genética , Transcriptoma/genética , Desaminase APOBEC-1/química , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Animais , Sequência de Bases , Citosina/metabolismo , Desaminação , Células HEK293 , Células Hep G2 , Humanos , Mutação , RNA/química , RNA/metabolismo , Ratos
2.
Clin Exp Nephrol ; 23(2): 199-206, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30128942

RESUMO

BACKGROUND: The estimated glomerular filtration rate (eGFR) is clinically used to approximate renal function and adapt drug dosage. Multiple myeloma is a hematological disease; its prognosis is largely influenced by renal function. We evaluated two commonly used GFR estimations, CKD-EPI and MDRD (CKD Epidemiology Collaboration; Modification of Diet in Renal Disease) in myeloma patients undergoing treatment with lenalidomide, a renally excreted immunomodulatory drug. METHODS: We prospectively studied 130 myeloma patients receiving lenalidomide treatment at our institution. At baseline and after 3 months, GFR estimations were performed based on the CKD-EPI and MDRD equations. We compared eGFR-dependent CKD staging and lenalidomide dosage assignments. RESULTS: Initially, most patients were classified as CKD stage I/II, using both equations. Comparison of baseline renal function via CKD-EPI and MDRD induced concordance of CKD staging in 83% of patients, while CKD-EPI improved CKD staging in 16% of patients (p = 0.11). CKD-EPI assigned 3% of patients to higher lenalidomide dosing as opposed to MDRD. Both equations showed improved eGFR after 3 months of lenalidomide treatment. CONCLUSIONS: In our multiple myeloma patient cohort, CKD-EPI and MDRD led to similar CKD staging with minor differences in lenalidomide dosage assignment. Consistent with previous studies, eGFR improved under lenalidomide treatment. To standardize GFR estimation in myeloma patients, we suggest using the CKD-EPI equation.


Assuntos
Antineoplásicos/administração & dosagem , Taxa de Filtração Glomerular , Rim/fisiopatologia , Lenalidomida/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Insuficiência Renal Crônica/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Creatinina/sangue , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Estudos Prospectivos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
3.
Nat Biotechnol ; 41(3): 337-343, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36163548

RESUMO

The CRISPR prime editor PE2 consists of a Streptococcus pyogenes Cas9 nickase (nSpCas9) fused at its C-terminus to a Moloney murine leukemia virus reverse transcriptase (MMLV-RT). Here we show that separated nSpCas9 and MMLV-RT proteins function as efficiently as intact PE2 in human cells. We use this Split-PE system to rapidly identify and engineer more compact prime editor architectures that also broaden the types of RTs used for prime editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Vírus da Leucemia Murina de Moloney , DNA Polimerase Dirigida por RNA , Streptococcus pyogenes , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Vírus da Leucemia Murina de Moloney/genética , DNA Polimerase Dirigida por RNA/genética , Streptococcus pyogenes/genética , Desoxirribonuclease I/genética
4.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38034032

RESUMO

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

5.
Nat Biotechnol ; 39(1): 41-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32690971

RESUMO

CRISPR-guided DNA cytosine and adenine base editors are widely used for many applications1-4 but primarily create DNA base transitions (that is, pyrimidine-to-pyrimidine or purine-to-purine). Here we describe the engineering of two base editor architectures that can efficiently induce targeted C-to-G base transversions, with reduced levels of unwanted C-to-W (W = A or T) and indel mutations. One of these C-to-G base editors (CGBE1), consists of an RNA-guided Cas9 nickase, an Escherichia coli-derived uracil DNA N-glycosylase (eUNG) and a rat APOBEC1 cytidine deaminase variant (R33A) previously shown to have reduced off-target RNA and DNA editing activities5,6. We show that CGBE1 can efficiently induce C-to-G edits, particularly in AT-rich sequence contexts in human cells. We also removed the eUNG domain to yield miniCGBE1, which reduced indel frequencies but only modestly decreased editing efficiency. CGBE1 and miniCGBE1 enable C-to-G edits and will serve as a basis for optimizing C-to-G base editors for research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas/genética , Citosina/metabolismo , Edição de Genes/métodos , Citidina Desaminase/metabolismo , DNA/genética , DNA/metabolismo , Guanina/metabolismo , Células HEK293 , Humanos
6.
Nat Commun ; 12(1): 1034, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589617

RESUMO

Prime editing (PE) is a versatile genome editing technology, but design of the required guide RNAs is more complex than for standard CRISPR-based nucleases or base editors. Here we describe PrimeDesign, a user-friendly, end-to-end web application and command-line tool for the design of PE experiments. PrimeDesign can be used for single and combination editing applications, as well as genome-wide and saturation mutagenesis screens. Using PrimeDesign, we construct PrimeVar, a comprehensive and searchable database that includes candidate prime editing guide RNA (pegRNA) and nicking sgRNA (ngRNA) combinations for installing or correcting >68,500 pathogenic human genetic variants from the ClinVar database. Finally, we use PrimeDesign to design pegRNAs/ngRNAs to install a variety of human pathogenic variants in human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Humano , RNA Guia de Cinetoplastídeos/genética , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bases de Dados Genéticas , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patologia , Humanos , Modelos Biológicos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
CRISPR J ; 4(1): 19-24, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571044

RESUMO

Gene drives hold promise for use in controlling insect vectors of diseases, agricultural pests, and for conservation of ecosystems against invasive species. At the same time, this technology comes with potential risks that include unknown downstream effects on entire ecosystems as well as the accidental or nefarious spread of organisms that carry the gene drive machinery. A code of ethics can be a useful tool for all parties involved in the development and regulation of gene drives and can be used to help ensure that a balanced analysis of risks, benefits, and values is taken into consideration in the interest of society and humanity. We have developed a code of ethics for gene drive research with the hope that this code will encourage the development of an international framework that includes ethical guidance of gene drive research and is incorporated into scientific practice by gaining broad agreement and adherence.


Assuntos
Códigos de Ética , Tecnologia de Impulso Genético , Ecossistema , Edição de Genes , Humanos , Espécies Introduzidas , Princípios Morais , Saúde Pública
8.
Nat Biotechnol ; 38(7): 861-864, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483364

RESUMO

Existing adenine and cytosine base editors induce only a single type of modification, limiting the range of DNA alterations that can be created. Here we describe a CRISPR-Cas9-based synchronous programmable adenine and cytosine editor (SPACE) that can concurrently introduce A-to-G and C-to-T substitutions with minimal RNA off-target edits. SPACE expands the range of possible DNA sequence alterations, broadening the research applications of CRISPR base editors.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Citosina Desaminase/genética , Edição de Genes , Adenina/química , Citosina/química , Células HEK293 , Humanos , Mutação/genética , RNA/genética
9.
Nat Biotechnol ; 37(9): 1041-1048, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477922

RESUMO

Cytosine or adenine base editors (CBEs or ABEs) can introduce specific DNA C-to-T or A-to-G alterations1-4. However, we recently demonstrated that they can also induce transcriptome-wide guide-RNA-independent editing of RNA bases5, and created selective curbing of unwanted RNA editing (SECURE)-BE3 variants that have reduced unwanted RNA-editing activity5. Here we describe structure-guided engineering of SECURE-ABE variants with reduced off-target RNA-editing activity and comparable on-target DNA-editing activity that are also among the smallest Streptococcus pyogenes Cas9 base editors described to date. We also tested CBEs with cytidine deaminases other than APOBEC1 and found that the human APOBEC3A-based CBE induces substantial editing of RNA bases, whereas an enhanced APOBEC3A-based CBE6, human activation-induced cytidine deaminase-based CBE7, and the Petromyzon marinus cytidine deaminase-based CBE Target-AID4 induce less editing of RNA. Finally, we found that CBEs and ABEs that exhibit RNA off-target editing activity can also self-edit their own transcripts, thereby leading to heterogeneity in base-editor coding sequences.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Animais , Clonagem Molecular , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Marcação de Genes , Células HEK293 , Humanos , Petromyzon , Conformação Proteica , RNA , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes , Transcriptoma
10.
Nat Biomed Eng ; 7(5): 607-608, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208465
11.
Mol Biol Cell ; 26(24): 4373-86, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26424799

RESUMO

It has long been known that electrical fields (EFs) are able to influence the direction of migrating cells, a process commonly referred to as electrotaxis or galvanotaxis. Most studies have focused on migrating cells equipped with an existing polarity before EF application, making it difficult to delineate EF-specific pathways. Here we study the initial events in front-rear organization of spreading keratinocytes to dissect the molecular requirements for random and EF-controlled polarization. We find that Arp2/3-dependent protrusive forces and Rac1/Cdc42 activity were generally required for both forms of polarization but were dispensable for controlling the direction of EF-controlled polarization. By contrast, we found a crucial role for extracellular pH as well as G protein coupled-receptor (GPCR) or purinergic signaling in the control of directionality. The normal direction of polarization toward the cathode was reverted by lowering extracellular pH. Polarization toward the anode was also seen at neutral pH when GPCR or purinergic signaling was inhibited. However, the stepwise increase of extracellular pH in this scenario led to restoration of cathodal polarization. Overall our work puts forward a model in which the EF uses distinct polarization pathways. The cathodal pathway involves GPCR/purinergic signaling and is dominant over the anodal pathway at neutral pH.


Assuntos
Polaridade Celular/fisiologia , Queratinócitos/citologia , Complexo 2-3 de Proteínas Relacionadas à Actina/antagonistas & inibidores , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Polaridade Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Estimulação Elétrica , Eletricidade , Humanos , Concentração de Íons de Hidrogênio , Indóis/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Transdução de Sinais
12.
Curr Biol ; 20(14): 1269-76, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20579879

RESUMO

Frizzled (Fz) is a seven-pass transmembrane receptor that acts in both Wingless (Wg) and planar cell polarity (PCP) pathways. A prerequisite for PCP signaling is the asymmetric subcellular distribution of Fz. However, the regulation of Fz asymmetry is currently not well understood. Here we describe that the transmembrane protein CG8444 (here termed VhaPRR) is needed for PCP signaling in Drosophila. VhaPRR is an accessory subunit of the vacuolar (V)-ATPase proton pump, but it also functions as a receptor for (pro)renin (PRR) in mammals. We show that VhaPRR function is tightly linked with Fz but not other PCP core proteins. Fz fails to localize asymmetrically in the absence of VhaPRR, and this is accompanied by prehair mispolarization of pupal wing cells. In addition, VhaPRR forms a protein complex with Fz receptors and interacts genetically with Fz in the Drosophila eye. VhaPRR also acts as a modulator of canonical Wnt signaling in larval and adult wing tissue. Its loss leads to an expansion of the Wg morphogen gradient and a reduction of Wg target gene expression. The requirement for additional V-ATPase subunits suggests that proton fluxes contribute to normal Fz receptor function and signaling.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Drosophila/genética , Imuno-Histoquímica , Imunoprecipitação , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA