RESUMO
OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.
Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Interleucina-11/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Hepatite Alcoólica/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.
Assuntos
Doença de Crohn , Enterite , Ácidos Graxos Ômega-3 , Animais , Doença de Crohn/tratamento farmacológico , Endorribonucleases , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Ácidos Graxos Insaturados , Humanos , Inflamação/tratamento farmacológico , Camundongos , Proteínas Serina-Treonina Quinases , Receptor 2 Toll-LikeRESUMO
OBJECTIVES: Metabolic inflammation is a hallmark of obesity and related disorders, afflicting substantial morbidity and mortality to individuals worldwide. White visceral and subcutaneous adipose tissue not only serves as energy storage but also controls metabolism. Adipose tissue inflammation, commonly observed in human obesity, is considered a critical driver of metabolic perturbation while molecular hubs are poorly explored. Metabolic stress evoked by e.g. long-chain fatty acids leads to oxidative perturbation of adipocytes and production of inflammatory cytokines, fuelling macrophage infiltration and systemic low-grade inflammation. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation, accumulation of oxygen-specific epitopes and cell death, collectively referred to as ferroptosis. Here, we explore the function of adipocyte GPX4 in mammalian metabolism. METHODS: We studied the regulation and function of GPX4 in differentiated mouse adipocytes derived from 3T3-L1 fibroblasts. We generated two conditional adipocyte-specific Gpx4 knockout mice by crossing Gpx4fl/fl mice with Adipoq-Cre+ (Gpx4-/-AT) or Fabp4-Cre+ (Gpx4+/-Fabp4) mice. Both models were metabolically characterized by a glucose tolerance test and insulin resistance test, and adipose tissue lipid peroxidation, inflammation and cell death were assessed by quantifying oxygen-specific epitopes, transcriptional analysis of chemokines, quantification of F4/80+ macrophages and TUNEL labelling. RESULTS: GPX4 expression was induced during and required for adipocyte differentiation. In mature adipocytes, impaired GPX4 activity spontaneously evoked lipid peroxidation and expression of inflammatory cytokines such as TNF-α, interleukin 1ß (IL-1ß), IL-6 and the IL-8 homologue CXCL1. Gpx4-/-AT mice spontaneously displayed adipocyte hypertrophy on a chow diet, which was paralleled by the accumulation of oxygen-specific epitopes and macrophage infiltration in adipose tissue. Furthermore, Gpx4-/-AT mice spontaneously developed glucose intolerance, hepatic insulin resistance and systemic low-grade inflammation, when compared to wildtype littermates, which was similarly recapitulated in Gpx4+/-Fabp4 mice. Gpx4-/-AT mice exhibited no signs of adipocyte death. CONCLUSION: Adipocyte GPX4 protects against spontaneous metabolic dysregulation and systemic low-grade inflammation independent from ferroptosis, which could be therapeutically exploited in the future.
Assuntos
Resistência à Insulina , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Epitopos/metabolismo , Inflamação/metabolismo , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Oxigênio/metabolismo , Fosfolipídeo Hidroperóxido Glutationa PeroxidaseRESUMO
OBJECTIVE: Alcohol-related liver disease (ALD) is a global healthcare problem with limited treatment options. Alpha-1 antitrypsin (AAT, encoded by SERPINA1) shows potent anti-inflammatory activities in many preclinical and clinical trials. In our study, we aimed to explore the role of AAT in ALD. DESIGN: An unselected cohort of 512 patients with cirrhosis was clinically characterised. Survival, clinical and biochemical parameters including AAT serum concentration were compared between patients with ALD and other aetiologies of liver disease. The role of AAT was evaluated in experimental ALD models. RESULTS: Cirrhotic ALD patients with AAT serum concentrations less than 120 mg/dL had a significantly higher risk for death/liver transplantation as compared with patients with AAT serum concentrations higher than 120 mg/dL. Multivariate Cox regression analysis showed that low AAT serum concentration was a NaMELD-independent predictor of survival/transplantation. Ethanol-fed wild-type (wt) mice displayed a significant decline in hepatic AAT compared with pair-fed mice. Therefore, hAAT-Tg mice were ethanol-fed, and these mice displayed protection from liver injury associated with decreased steatosis, hepatic neutrophil infiltration and abated expression of proinflammatory cytokines. To test the therapeutic capability of AAT, ethanol-fed wt mice were treated with human AAT. Administration of AAT ameliorated hepatic injury, neutrophil infiltration and steatosis. CONCLUSION: Cirrhotic ALD patients with AAT concentrations less than 120 mg/dL displayed an increased risk for death/liver transplantation. Both hAAT-Tg mice and AAT-treated wt animals showed protection from ethanol-induced liver injury. AAT could reflect a treatment option for human ALD, especially for alcoholic hepatitis.
Assuntos
Hepatopatias Alcoólicas/metabolismo , alfa 1-Antitripsina/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Infiltração de Neutrófilos/efeitos dos fármacos , Análise de Sobrevida , alfa 1-Antitripsina/genéticaRESUMO
The intestinal and hepatobiliary tract exhibits host-specific commensal colonization. The resident microbiota has emerged as a key player in intestinal and hepatic diseases. Alcoholic and nonalcoholic fatty liver diseases (ALD/NAFLD), primary sclerosing cholangitis (PSC), liver cirrhosis, and some of their clinical complications, such as hepatic encephalopathy (HE), have been linked to a microbial signature, as also observed for severe liver inflammation in alcoholic hepatitis. In turn, the liver impacts, and communicates with, the microbiota through hepatic mediators, such as bile acids or inflammatory signals. Therefore, a liver-microbiome bidirectional crosstalk appears to be critical in health and various liver diseases and could be therapeutically targeted, such as by fecal microbiota transplantation.
Assuntos
Suscetibilidade a Doenças , Homeostase , Fígado/fisiologia , Microbiota , Animais , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Regeneração Hepática , Microbiota/imunologiaRESUMO
BACKGROUND AND AIMS: Cardiovascular disease (CVD) is the leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD), both with and without type 2 diabetes mellitus (T2DM). Cardiac autonomic dysfunction is a risk factor for CVD morbidity and mortality. The aim of this pilot study was to assess whether there is an association between NAFLD and impaired cardiac autonomic function. METHODS AND RESULTS: Among the first 4979 participants from the Cooperative Health Research in South Tyrol (CHRIS) study, we randomly recruited 173 individuals with T2DM and 183 age- and sex-matched nondiabetic controls. Participants underwent ultrasonography and vibration-controlled transient elastography (Fibroscan®, Echosens) to assess hepatic steatosis and liver stiffness. The low-to-high-frequency (LF/HF) power ratio and other heart rate variability (HRV) measures were calculated from a 20-min resting electrocardiogram (ECG) to derive a measure of cardiac sympathetic/parasympathetic imbalance. Among the 356 individuals recruited for the study, 117 had NAFLD and T2DM, 56 had T2DM alone, 68 had NAFLD alone, and 115 subjects had neither condition. Individuals with T2DM and NAFLD (adjusted odds ratio [OR] 4.29, 95% confidence intervals [CI] 1.90-10.6) and individuals with NAFLD alone (adjusted OR 3.41, 95% CI 1.59-7.29), but not those with T2DM alone, had a substantially increased risk of having cardiac sympathetic/parasympathetic imbalance, compared with those without NAFLD and T2DM. Logistic regression models were adjusted for age, sex, body mass index (BMI), hypertension, dyslipidemia, insulin resistance, hemoglobin A1c (HbA1c), C-reactive protein (CRP), and Fibroscan®-measured liver stiffness. CONCLUSIONS: NAFLD was associated with cardiac sympathetic/parasympathetic imbalance, regardless of the presence or absence of T2DM, liver stiffness, and other potential confounding factors.
Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Doenças Cardiovasculares/epidemiologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Projetos PilotoRESUMO
BACKGROUND: Liver transplantation (LT) is the only curative treatment for end-stage liver disease. Less than 10% of global transplantation needs are met worldwide, and the need for LT is still increasing. The death rates on the waiting list remain too high. OBJECTIVE: It is, therefore, critical to raise awareness among the public and health care providers and in turn increasingly acquire donors. METHODS: We performed a Google Trends search using the search terms liver transplantation and liver transplant on October 15, 2020. On the basis of the resulting monthly data, the annual average Google Trends indices were calculated for the years 2004 to 2018. We not only investigated the trend worldwide but also used data from the United Network for Organ Sharing (UNOS), Spain, and Eurotransplant. Using pairwise Spearman correlations, Google Trends indices were examined over time and compared with the total number of liver transplants retrieved from the respective official websites of UNOS, the Organización Nacional de Trasplantes, and Eurotransplant. RESULTS: From 2004 to 2018, there was a significant decrease in the worldwide Google Trends index from 78.2 in 2004 to 20.5 in 2018 (-71.2%). This trend was more evident in UNOS than in the Eurotransplant group. In the same period, the number of transplanted livers increased worldwide. The waiting list mortality rate was 31% for Eurotransplant and 29% for UNOS. However, in Spain, where there are excellent awareness programs, the Google Trends index remained stable over the years with comparable, increasing LT numbers but a significantly lower waiting list mortality (15%). CONCLUSIONS: Public awareness in LT has decreased significantly over the past two decades. Therefore, novel awareness programs should be initialized.
Assuntos
Transplante de Fígado , Benchmarking , Humanos , Ferramenta de Busca , Espanha , Listas de EsperaRESUMO
Obesity has emerged as a substantial global healthcare issue that is frequently associated with insulin resistance and non-alcoholic fatty liver disease (NAFLD). Tsukushi (TSK), a liver-derived molecule, was recently identified as a major driver of NAFLD. Laparoscopic adjustable gastric banding (LAGB) has proven effective in reducing body weight and improving NAFLD. We therefore aimed to investigate the relation between LAGB-induced weight loss and TSK expression. Twenty-six obese patients undergoing LAGB were included in the study and metabolic parameters were assessed before (t0) and six months after LAGB (t6). The expression of TSK in liver and subcutaneous adipose tissue (AT) specimens was determined at both time points. To unravel regulatory mechanisms of TSK expression, human peripheral blood mononuclear cells (PBMCs) were stimulated with pro-inflammatory cytokines and TSK mRNA levels were analyzed by quantitative polymerase chain reaction. LAGB induced pronounced weight loss which was paralleled by amelioration of metabolic disturbances and histologically defined NAFLD. While hepatic TSK expression was markedly decreased after LAGB, adipose tissue TSK expression remained comparable to baseline. The decline in hepatic TSK expression after LAGB positively correlated with weight loss and the reduction in BMI, and negatively correlated with NAFLD activity score (NAS). In human PBMCs, pro-inflammatory cytokines such as IL-1ß and TNFα induced the expression of TSK. In conclusion, LAGB-induced weight loss reduces hepatic TSK expression. Inhibiting TSK might represent a promising target for treating NAFLD in the future.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Proteoglicanas/metabolismo , Redução de Peso/fisiologia , Adulto , Cirurgia Bariátrica/métodos , Células Cultivadas , Citocinas/metabolismo , Feminino , Gastroplastia/métodos , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Leucócitos Mononucleares/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismoRESUMO
BACKGROUND & AIMS: Alcohol-related liver disease (ALD) comprises different liver disorders which impose a health care issue. ALD and particularly alcoholic steatohepatitis, an acute inflammatory condition, cause a substantial morbidity and mortality as effective treatment options remain elusive. Inflammation in ALD is fuelled by macrophages (Kupffer cells [KCs]) which are activated by intestinal pathogen associated molecular patterns, eg lipopolysaccharide (LPS), disseminated beyond a defective intestinal barrier. We hypothesized that the immunomodulator dimethyl-fumarate (DMF), which is approved for the treatment of human inflammatory conditions such as multiple sclerosis or psoriasis, ameliorates the course of experimental ALD. METHODS: Dimethyl-fumarate or vehicle was orally administered to wild-type mice receiving a Lieber-DeCarli diet containing 5% ethanol for 15 days. Liver injury, steatosis and inflammation were evaluated by histology, biochemical- and immunoassays. Moreover, we investigated a direct immunosuppressive effect of DMF on KCs and explored a potential impact on ethanol-induced intestinal barrier disruption. RESULTS: Dimethyl-fumarate protected against ethanol-induced hepatic injury, steatosis and inflammation in mice. Specifically, we observed reduced hepatic triglyceride and ALT accumulation, reduced hepatic expression of inflammatory cytokines (Tnf-α, Il-1ß, Cxcl1) and reduced abundance of neutrophils and macrophages in ethanol-fed and DMF-treated mice when compared to vehicle. DMF protected against ethanol-induced barrier disruption and abrogated systemic LPS concentration. In addition, DMF abolished LPS-induced cytokine responses of KCs. CONCLUSIONS: Dimethyl-fumarate counteracts ethanol-induced barrier dysfunction, suppresses inflammatory responses of KCs and ameliorates hepatic inflammation and steatosis, hallmarks of experimental ALD. Our data indicates that DMF treatment might be beneficial in human ALD and respective clinical trials are eagerly awaited.
Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Animais , Fumarato de Dimetilo/farmacologia , Inflamação/tratamento farmacológico , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants. METHODS: Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out. RESULTS: We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean - 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean - 1.30, SD, 1.17). DISCUSSION: Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.
Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Microbiota , Hepatopatia Gordurosa não Alcoólica/microbiologia , Idoso , Bactérias/metabolismo , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Síndrome Metabólica/complicações , Hepatopatia Gordurosa não Alcoólica/complicaçõesRESUMO
OBJECTIVE: Low-grade chronic inflammation emerges as a potent driver of insulin resistance and glucose dysregulation in obesity and associated non-alcoholic fatty liver disease (NAFLD). The liver, subcutaneous fat and the immune system participate in disturbances of metabolism. Type I interferon (IFN) signalling initiated by innate and adaptive immunity modulates inflammatory responses consequent to infection. However, little is known about the role of type I IFN signalling in metabolic diseases and the development of NAFLD. DESIGN: We determined the impact of type I IFN signalling by tissue-specific deletion of interferon (α and ß) receptor 1 (Ifnar1) in hepatocytes (Ifnar1Δhep ), adipocytes (Ifnar1Δat ), intestinal epithelial cells (Ifnar1ΔIEC ) or myelocytes (Ifnar1Δmyel ) on glucose metabolism, obesity and hepatic disease in mice exposed to a high-fat or methionine-choline-deficient (MCD) diet. Furthermore, we investigated the expression of type I IFN-regulated genes in patients with obesity undergoing laparoscopic adjustable gastric banding (LAGB). RESULTS: Long chain fatty acids induce type I IFN responses in murine hepatocytes and macrophages and exposure to a high-fat diet elicited type I IFN-regulated gene expression in the liver of wild-type mice. Hepatocyte-specific, but not adipose tissue-specific deletion of Ifnar1 worsened steatosis and inflammation induced by the MCD diet. In contrast, adipose-specific, but not hepatocyte-specific deletion of Ifnar1 deteriorated metabolic dysregulation induced by a high-fat diet, indicated by increased weight gain, insulin resistance and an impaired glucose tolerance. Abrogated type I IFN signalling in myeloid or intestinal epithelial cells did not modulate susceptibility to metabolic or hepatic disease. Improved metabolic control in patients with obesity after LAGB was associated with increased expression of type I IFN-regulated genes in subcutaneous adipose tissue and liver. CONCLUSIONS: Our study implicates a role for adipose and hepatocyte type I IFN signalling in diet-induced metabolic dysregulation and hepatic disease. Further studies on type I IFN signalling in metabolic diseases are warranted.
Assuntos
Tecido Adiposo/imunologia , Interferon Tipo I/imunologia , Doenças Metabólicas/prevenção & controle , Obesidade/imunologia , Adulto , Idoso , Animais , Glicemia/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Feminino , Gastroplastia , Regulação da Expressão Gênica/imunologia , Intolerância à Glucose/imunologia , Hepatócitos/imunologia , Humanos , Fígado/imunologia , Macrófagos/imunologia , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Obesidade Mórbida/genética , Obesidade Mórbida/imunologia , Obesidade Mórbida/cirurgia , Período Pós-Operatório , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia , Adulto JovemRESUMO
OBJECTIVE: Nicotinamide phosphoribosyltransferase (NAMPT, also referred to as pre-B cell colony-enhancing factor or visfatin) is critically required for the maintenance of cellular nicotinamide adenine dinucleotide (NAD) supply catalysing the rate-limiting step of the NAD salvage pathway. NAMPT is strongly upregulated in inflammation including IBD and counteracts an increased cellular NAD turnover mediated by NAD-depleting enzymes. These constitute an important mechanistic link between inflammatory, metabolic and transcriptional pathways and NAD metabolism. DESIGN: We investigated the impact of NAMPT inhibition by the small-molecule inhibitor FK866 in the dextran sulfate sodium (DSS) model of colitis and the azoxymethane/DSS model of colitis-associated cancer. The impact of NAD depletion on differentiation of mouse and human primary monocytes/macrophages was studied in vitro. Finally, we tested the efficacy of FK866 compared with dexamethasone and infliximab in lamina propria mononuclear cells (LPMNC) isolated from patients with IBD. RESULTS: FK866 ameliorated DSS-induced colitis and suppressed inflammation-associated tumorigenesis in mice. FK866 potently inhibited NAMPT activity as demonstrated by reduced mucosal NAD, resulting in reduced abundances and activities of NAD-dependent enzymes including PARP1, Sirt6 and CD38, reduced nuclear factor kappa B activation, and decreased cellular infiltration by inflammatory monocytes, macrophages and activated T cells. Remarkably, FK866 effectively supressed cytokine release from LPMNCs of patients with IBD. As FK866 was also effective in Rag1-/- mice, we mechanistically linked FK866 treatment with altered monocyte/macrophage biology and skewed macrophage polarisation by reducing CD86, CD38, MHC-II and interleukin (IL)-6 and promoting CD206, Egr2 and IL-10. CONCLUSION: Our data emphasise the importance of NAD immunometabolism for mucosal immunity and highlight FK866-mediated NAMPT blockade as a promising therapeutic approach in acute intestinal inflammation.
Assuntos
Acrilamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colite Ulcerativa , Neoplasias do Colo , Dexametasona/farmacologia , Infliximab/farmacologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Animais , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Metabolismo Energético , Fármacos Gastrointestinais/farmacologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Monócitos/metabolismo , Monócitos/patologiaRESUMO
OBJECTIVE: Alcoholic liver disease (ALD) is a global health problem with limited therapeutic options. Intestinal barrier integrity and the microbiota modulate susceptibility to ALD. Akkermansia muciniphila, a Gram-negative intestinal commensal, promotes barrier function partly by enhancing mucus production. The aim of this study was to investigate microbial alterations in ALD and to define the impact of A. muciniphila administration on the course of ALD. DESIGN: The intestinal microbiota was analysed in an unbiased approach by 16S ribosomal DNA (rDNA) sequencing in a Lieber-DeCarli ALD mouse model, and faecal A. muciniphila abundance was determined in a cohort of patients with alcoholic steatohepatitis (ASH). The impact of A. muciniphila on the development of experimental acute and chronic ALD was determined in a preventive and therapeutic setting, and intestinal barrier integrity was analysed. RESULTS: Patients with ASH exhibited a decreased abundance of faecal A. muciniphila when compared with healthy controls that indirectly correlated with hepatic disease severity. Ethanol feeding of wild-type mice resulted in a prominent decline in A. muciniphila abundance. Ethanol-induced intestinal A. muciniphila depletion could be restored by oral A. muciniphila supplementation. Furthermore, A. muciniphila administration when performed in a preventive setting decreased hepatic injury, steatosis and neutrophil infiltration. A. muciniphila also protected against ethanol-induced gut leakiness, enhanced mucus thickness and tight-junction expression. In already established ALD, A. muciniphila used therapeutically ameliorated hepatic injury and neutrophil infiltration. CONCLUSION: Ethanol exposure diminishes intestinal A. muciniphila abundance in both mice and humans and can be recovered in experimental ALD by oral supplementation. A. muciniphila promotes intestinal barrier integrity and ameliorates experimental ALD. Our data suggest that patients with ALD might benefit from A. muciniphila supplementation.
Assuntos
Etanol/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Hepatopatias Alcoólicas/microbiologia , Verrucomicrobia/efeitos dos fármacos , Adulto , Idoso , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Feminino , Imunofluorescência , Microbioma Gastrointestinal/genética , Humanos , Imuno-Histoquímica , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Verrucomicrobia/fisiologiaRESUMO
BACKGROUND & AIMS: Chronic alcohol consumption and alcoholic liver disease (ALD) afflicts individuals with substantial morbidity and mortality with limited treatment options available. Hepatic inflammation, triggered by activated Kupffer cells, is a driving force in alcoholic liver disease. Interleukin 37 (IL-37) exerts anti-inflammatory effects in hepatic diseases, however, the impact of Interleukin 37 on alcoholic liver disease is unknown. In this study, we addressed the role of Interleukin 37 in alcoholic liver disease. METHODS: We utilized Interleukin 37 expressing transgenic mice and human recombinant Interleukin 37 in models of alcoholic liver disease. Interleukin 37 expression was measured in liver samples of 20 alcoholic steatohepatitis and 36 non-alcoholic fatty liver disease patients. RESULTS: Interleukin 37 transgenic mice are not protected against hepatic injury and inflammation in alcoholic liver disease. Ethanol suppressed Interleukin 37 expression in transgenic mice. Alcoholic steatohepatitis (ASH) patients similarly exhibited reduced Interleukin 37 expression when compared to non-alcoholic fatty liver disease (NAFLD) patients. Human recombinant Interleukin 37 ameliorated hepatic inflammation in a binge drinking model of alcoholic liver disease. CONCLUSION: We provide evidence for an exogenous noxae that suppresses Interleukin 37 expression which limits its anti-inflammatory effects in alcoholic liver disease.
Assuntos
Etanol/efeitos adversos , Interleucina-1/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Etanol/administração & dosagem , Feminino , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , RNA Mensageiro/análise , Adulto JovemRESUMO
Accumulating evidence links obesity with low-grade inflammation which may originate from adipose tissue that secretes a plethora of pro- and anti-inflammatory cytokines termed adipokines. Adiponectin and leptin have evolved as crucial signals in many obesity-related pathologies including non-alcoholic fatty liver disease (NAFLD). Whereas adiponectin deficiency might be critically involved in the pro-inflammatory state associated with obesity and related disorders, overproduction of leptin, a rather pro-inflammatory mediator, is considered of equal relevance. An imbalanced adipokine profile in obesity consecutively contributes to metabolic inflammation in NAFLD, which is associated with a substantial risk for developing hepatocellular carcinoma (HCC) also in the non-cirrhotic stage of disease. Both adiponectin and leptin have been related to liver tumorigenesis especially in preclinical models. This review covers recent advances in our understanding of some adipokines in NAFLD and associated HCC.
Assuntos
Adiponectina/metabolismo , Carcinoma Hepatocelular/metabolismo , Leptina/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Obesidade/patologiaRESUMO
BACKGROUND & AIMS: Alcoholic steatohepatitis (ASH) is characterised by neutrophil infiltration that contributes to hepatic injury and disease. Lipocalin-2 (LCN2) was originally identified as siderophore binding peptide in neutrophils, which exerted tissue protective effects in several disease models. Here we investigate the role of LCN2 in the pathogenesis of alcohol-induced liver injury. METHODS: We compared hepatic LCN2 expression in ASH patients, alcoholic cirrhosis patients without evidence of ASH and patients with non-alcoholic fatty liver disease (NAFLD; i.e. simple steatosis). To mechanistically dissect LCN2 function in alcohol-induced liver injury, we subjected wild-type (WT) and Lcn2-deficient (Lcn2(-/-)) mice to the Lieber-DeCarli diet containing 5% ethanol (EtOH) or isocaloric maltose. Adoptive transfer experiments were performed to track neutrophil migration. Furthermore, we tested the effect of antibody-mediated LCN2 neutralisation in an acute model of ethanol-induced hepatic injury. RESULTS: Patients with ASH exhibited increased hepatic LCN2 immunoreactivity compared to patients with alcoholic cirrhosis or simple steatosis, which mainly localised to neutrophils. Similarly, ethanol-fed mice exhibited increased LCN2 expression that mainly localised to leukocytes and especially neutrophils. Lcn2(-/-) mice were protected from alcoholic liver disease (ALD) as demonstrated by reduced neutrophil infiltration, liver injury and hepatic steatosis compared to WT controls. Adoptive transfers revealed that neutrophil-derived LCN2 critically determines hepatic neutrophil immigration and persistence during chronic alcohol exposure. Antibody-mediated neutralisation of LCN2 protected from hepatic injury and neutrophilic infiltration after acute alcohol challenge. CONCLUSIONS: LCN2 drives ethanol-induced neutrophilic inflammation and propagates the development of ALD. Despite a critical role for LCN2 in immunity and infection, pharmacological neutralisation of LCN2 might be of promise in ALD.
Assuntos
Inflamação/etiologia , Lipocalina-2/fisiologia , Hepatopatias Alcoólicas/etiologia , Infiltração de Neutrófilos , Animais , Feminino , Humanos , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
INTRODUCTION: Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED: We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION: The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Humanos , Cirrose Hepática , Progressão da Doença , InflamaçãoRESUMO
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/epidemiologia , InflamaçãoRESUMO
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.