Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543815

RESUMO

People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Aspirina/uso terapêutico , Anticoagulantes/uso terapêutico , Coagulação Sanguínea
2.
Expert Opin Drug Metab Toxicol ; 20(7): 561-577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38141160

RESUMO

INTRODUCTION: The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being. AREAS COVERED: This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies. EXPERT OPINION: The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.


Assuntos
Inteligência Artificial , Humanos , Animais , Criança , Feminino , Toxicologia/métodos , Testes de Toxicidade/métodos , Tomada de Decisões , Gravidez
3.
Artigo em Inglês | MEDLINE | ID: mdl-35351688

RESUMO

BACKGROUND: Coexistent heart failure (HF) and diabetes mellitus (DM) are associated with marked morbidity and mortality. Optimizing treatment strategies can reduce the number and severity of events. Insulin is frequently used in these patients, but its benefit/risk ratio is still not clear, particularly since new antidiabetic drugs that reduce major adverse cardiac events (MACEs) and renal failure have recently come into use. Our aim is to compare the clinical effects of insulin in a real-world setting of first-time users, with sodium-glucose cotransporter-2 inhibitor (SGLT-2i), glucagon-like peptide-1 receptor agonist (GLP-1RA) and the other antihyperglycemic agents (other-AHAs). METHODS: We used the administrative databases of two Italian regions, during the years 2010-2018. Outcomes in whole and propensity-matched cohorts were examined using Cox models. A meta-analysis was also conducted combining the data from both regions. RESULTS: We identified 34 376 individuals ≥50 years old with DM and HF; 42.0% were aged >80 years and 46.7% were women. SGLT-2i and GLP-1RA significantly reduced MACE compared with insulin and particularly death from any cause (SGLT-2i, hazard ratio (95% CI) 0.29 (0.23 to 0.36); GLP-1RA, 0.482 (0.51 to 0.42)) and first hospitalization for HF (0.57 (0.40 to 0.81) and 0.67 (0.59 to 0.76)). CONCLUSIONS: In patients with DM and HF, SGLT-2i and GLP-1RA significantly reduced MACE compared with insulin, and particularly any cause of death and first hospitalization for HF. These groups of medications had high safety profiles compared with other-AHAs and particularly with insulin. The inadequate optimization of HF and DM cotreatment in the insulin cohort is noteworthy.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA