Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271879

RESUMO

We have generated mouse models of malignant mesothelioma (MM) based upon disruption of the Bap1, Nf2, and Cdkn2ab tumor suppressor loci in various combinations as also frequently observed in human MM. Inactivation of all three loci in the mesothelial lining of the thoracic cavity leads to a highly aggressive MM that recapitulates the histological features and gene expression profile observed in human patients. The tumors also show a similar inflammatory phenotype. Bap1 deletion alone does not cause MM but dramatically accelerates MM development when combined with Nf2 and Cdkn2ab (hereafter BNC) disruption. The accelerated tumor development is accompanied by increased Polycomb repression and EZH2-mediated redistribution of H3K27me3 toward promoter sites with concomitant activation of PI3K and MAPK pathways. Treatment of BNC tumor-bearing mice with cisplatin and pemetrexed, the current frontline treatment, prolongs survival. This makes the autochthonous mouse model described here very well suited to explore the pathogenesis of MM and validate new treatment regimens for MM, including immunotherapy.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Deleção de Genes , Mesotelioma Maligno/metabolismo , Neurofibromina 2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunofenotipagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Front Immunol ; 10: 1863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481955

RESUMO

Rheumatoid arthritis (RA) is a progressive, destructive autoimmune arthritis. Break of tolerance and formation of autoantibodies occur years before arthritis. Adaptive immunity is initiated in lymphoid tissue where lymph node stromal cells (LNSCs) play a crucial role in shaping the immune response and maintaining peripheral tolerance. Here we performed the first epigenomic characterization of LNSCs during health and early RA, by analyzing their transcriptome and DNA methylome in LNSCs isolated from lymph node needle biopsies obtained from healthy controls (HC), autoantibody positive RA-risk individuals and patients with established RA. Of interest, LNSCs from RA-risk individuals and RA patients revealed a common significantly differential expressed gene signature compared with HC LNSCs. Pathway analysis of this common signature showed, among others, significant enrichment of pathways affecting the extracellular matrix (ECM), cholesterol biosynthesis and immune system. In a gel contraction assay LNSCs from RA-risk individuals and RA patients showed impaired collagen contraction compared to healthy LNSCs. In RA LNSCs a significant enrichment was observed for genes involved in cytokine signaling, hemostasis and packaging of telomere ends. In contrast, in RA-risk LNSCs pathways in cancer (cell cycle related genes) were differentially expressed compared with HC, which could be validated in vitro using a proliferation assay, which indicated a slower proliferation rate. DNA methylation analyses revealed common and specific differentially methylated CpG sites (DMS) in LNSC from RA patients and RA-risk individuals compared with HC. Intriguingly, shared DMS were all associated with antigen processing and presentation. This data point toward alterations in cytoskeleton and antigen-processing and presentation in LNSC from RA-risk individuals and RA patients. Further studies are required to investigate the consequence of this LNSC abnormality on LNSC-mediated immunomodulation.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Linfonodos , Células Estromais , Transcriptoma , Epigênese Genética , Humanos
3.
Crit Rev Oncol Hematol ; 114: 139-152, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28477742

RESUMO

Pancreatic cancer is a highly deadly disease: almost all patients develop metastases and conventional treatments have little impact on survival. Therapeutically, this tumor is poorly responsive, largely due to drug resistance. Accumulating evidence suggest that this chemoresistance is intimately linked to specific metabolic aberrations of pancreatic cancer cells, notably an increased use of glucose and the amino acid glutamine fueling anabolic processes. Altered metabolism contributes also to modulation of apoptosis, angiogenesis and drug targets, conferring a resistant phenotype. As a modality to overcome chemoresistance, a variety of experimental compounds inhibiting key metabolic pathways emerged as a promising approach to potentiate the standard treatments for pancreatic cancer in preclinical studies. These results warrant confirmation in clinical trials. Thus, this review summarizes the impact of metabolic aberrations from the perspective of drug resistance and discusses possible novel applications of metabolic inhibition for the development of more effective drugs against pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA