Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 184(12): 3217-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25440114

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Expression of miR-21, an oncomiR, is frequently altered and may be distinctly expressed in the tumor stroma. Because tumor lesions are a complex mixture of cell types, we hypothesized that analysis of miR-21 expression at single-cell resolution could provide more accurate information to assess disease recurrence risk and BC-related death. We implemented a fully automated, tissue slide-based assay to detect miR-21 expression in 988 patients with BC. The miR-21(High) group exhibited shorter recurrence-free survival [hazard ratio (HR), 1.71; P < 0.001] and BC-specific survival (HR, 1.96; P < 0.001) in multivariate regression analyses. When tumor compartment and levels of miR-21 expression were considered, significant associations with poor clinical outcome were detected exclusively in tumor epithelia from estrogen receptor- and/or progesterone receptor-positive human epidermal growth factor receptor 2-negative cases [recurrence-free survival: HR, 3.67 (P = 0.006); BC-specific survival: HR, 5.13 (P = 0.002)] and in tumor stroma from TNBC cases [recurrence-free survival: HR, 2.59 (P = 0.013); BC-specific survival: HR, 3.37 (P = 0.003)]. These findings suggest that the context of altered miR-21 expression provides clinically relevant information. Importantly, miR-21 expression was predominantly up-regulated and potentially prognostic in the tumor stroma of TNBC.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Células Estromais/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Idoso , Sobrevivência Celular , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , Receptor ErbB-2/metabolismo
2.
J Invest Dermatol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38395106

RESUMO

Cutaneous neurofibromas (CNFs) are benign tumors that occur in the dermis of individuals with the inherited tumor predisposition disorder, neurofibromatosis type 1. CNFs cause disfigurement, pain, burning, and itching, resulting in substantially reduced QOL in patients with neurofibromatosis type 1. CNFs are benign tumors that exhibit cellular and molecular heterogeneity, making it difficult to develop tractable in vitro or in vivo models. As a result, CNF research and drug discovery efforts have been limited. To address this need, we developed a reproducible patient-derived explant (PDE) ex vivo culture model using CNF tumors from patients with neurofibromatosis type 1. CNF PDEs remain viable in culture for over 9 days and recapitulate the cellular composition and molecular signaling of CNFs. Using CNF PDEs as a model system, we found that proliferation was associated with increased T-cell infiltration. Furthermore, we identified a pattern of reciprocal inflammatory signaling in CNF PDEs in which tumors rely on prostaglandin or leukotriene-mediated signaling pathways. As proof of principle, we show that ex vivo glucocorticoid treatment reduced the expression of proinflammatory genes, confirming that CNF PDEs are a useful model for both mechanistic studies and preclinical drug testing.

3.
Mol Metab ; 80: 101876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216123

RESUMO

OBJECTIVE: NF1 is a tumor suppressor gene and its protein product, neurofibromin, is a negative regulator of the RAS pathway. NF1 is one of the top driver mutations in sporadic breast cancer such that 27 % of breast cancers exhibit damaging NF1 alterations. NF1 loss-of-function is a frequent event in the genomic evolution of estrogen receptor (ER)+ breast cancer metastasis and endocrine resistance. Individuals with Neurofibromatosis type 1 (NF) - a disorder caused by germline NF1 mutations - have an increased risk of dying from breast cancer [1-4]. NF-related breast cancers are associated with decreased overall survival compared to sporadic breast cancer. Despite numerous studies interrogating the role of RAS mutations in tumor metabolism, no study has comprehensively profiled the NF1-deficient breast cancer metabolome to define patterns of energetic and metabolic reprogramming. The goals of this investigation were (1) to define the role of NF1 deficiency in estrogen receptor-positive (ER+) breast cancer metabolic reprogramming and (2) to identify potential targeted pathway and metabolic inhibitor combination therapies for NF1-deficient ER + breast cancer. METHODS: We employed two ER+ NF1-deficient breast cancer models: (1) an NF1-deficient MCF7 breast cancer cell line to model sporadic breast cancer, and (2) three distinct, Nf1-deficient rat models to model NF-related breast cancer [1]. IncuCyte proliferation analysis was used to measure the effect of NF1 deficiency on cell proliferation and drug response. Protein quantity was assessed by Western Blot analysis. We then used RNAseq to investigate the transcriptional effect of NF1 deficiency on global and metabolism-related transcription. We measured cellular energetics using Agilent Seahorse XF-96 Glyco Stress Test and Mito Stress Test assays. We performed stable isotope labeling and measured [U-13C]-glucose and [U-13C]-glutamine metabolite incorporation and measured total metabolite pools using mass spectrometry. Lastly, we used a Bliss synergy model to investigate NF1-driven changes in targeted and metabolic inhibitor synergy. RESULTS: Our results revealed that NF1 deficiency enhanced cell proliferation, altered neurofibromin expression, and increased RAS and PI3K/AKT pathway signaling while constraining oxidative ATP production and restricting energetic flexibility. Neurofibromin deficiency also increased glutamine influx into TCA intermediates and dramatically increased lipid pools, especially triglycerides (TG). Lastly, NF1 deficiency alters the synergy between metabolic inhibitors and traditional targeted inhibitors. This includes increased synergy with inhibitors targeting glycolysis, glutamine metabolism, mitochondrial fatty acid transport, and TG synthesis. CONCLUSIONS: NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. This reprogramming is characterized by oxidative ATP constraints, glutamine TCA influx, and lipid pool expansion, and these metabolic changes introduce novel metabolic-to-targeted inhibitor synergies.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Glutamina/metabolismo , Lipídeos , Reprogramação Metabólica , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
4.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480916

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Linhagem da Célula/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Neurofibrossarcoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética
5.
Front Cell Dev Biol ; 12: 1375441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799507

RESUMO

Background: Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach: To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results: We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion: Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.

6.
Proc Natl Acad Sci U S A ; 106(31): 12909-14, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19567831

RESUMO

Understanding the signaling pathways that drive aggressive breast cancers is critical to the development of effective therapeutics. The oncogene MET is associated with decreased survival in breast cancer, yet the role that MET plays in the various breast cancer subtypes is unclear. We describe a knockin mouse with mutationally activated Met (Met(mut)) that develops a high incidence of diverse mammary tumors with basal characteristics, including metaplasia, absence of progesterone receptor and ERBB2 expression, and expression of cytokeratin 5. With gene expression and tissue microarray analysis, we show that high MET expression in human breast cancers significantly correlated with estrogen receptor negative/ERBB2 negative tumors and with basal breast cancers. Few treatment options exist for breast cancers of the basal or trastuzumab-resistant ERBB2 subtypes. We conclude from these studies that MET may play a critical role in the development of the most aggressive breast cancers and may be a rational therapeutic target.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias Mamárias Experimentais/etiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Adenocarcinoma/etiologia , Adenocarcinoma/genética , Animais , Neoplasias da Mama/genética , Feminino , Amplificação de Genes , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-met/genética , Receptor ErbB-2/análise , Receptores de Progesterona/análise , Transdução de Sinais
7.
Epigenetics Chromatin ; 14(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436083

RESUMO

Benign peripheral nerve sheath tumors are the clinical hallmark of Neurofibromatosis Type 1. They account for substantial morbidity and mortality in NF1. Cutaneous (CNF) and plexiform neurofibromas (PNF) share nearly identical histology, but maintain different growth rates and risk of malignant conversion. The reasons for this disparate clinical behavior are not well explained by recent genome or transcriptome profiling studies. We hypothesized that CNFs and PNFs are epigenetically distinct tumor types that exhibit differential signaling due to genome-wide and site-specific methylation events. We interrogated the methylation profiles of 45 CNFs and 17 PNFs from NF1 subjects with the Illumina EPIC 850K methylation array. Based on these profiles, we confirm that CNFs and PNFs are epigenetically distinct tumors with broad differences in higher-order chromatin states and specific methylation events altering genes involved in key biological and cellular processes, such as inflammation, RAS/MAPK signaling, actin cytoskeleton rearrangement, and oxytocin signaling. Based on our identification of two separate DMRs associated with alternative leading exons in MAP2K3, we demonstrate differential RAS/MKK3/p38 signaling between CNFs and PNFs. Epigenetic reinforcement of RAS/MKK/p38 was a defining characteristic of CNFs leading to pro-inflammatory signaling and chromatin conformational changes, whereas PNFs signaled predominantly through RAS/MEK. Tumor size also correlated with specific CpG methylation events. Taken together, these findings confirm that NF1 deficiency influences the epigenetic regulation of RAS signaling fates, accounting for observed differences in CNF and PNF clinical behavior. The extension of these findings is that CNFs may respond differently than PNFs to RAS-targeted therapeutics raising the possibility of targeting p38-mediated inflammation for CNF treatment.


Assuntos
Neurofibroma Plexiforme , Neurofibromatose 1 , Epigênese Genética , Epigenômica , Humanos , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Transdução de Sinais
8.
Bio Protoc ; 10(22): e3818, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659470

RESUMO

With the advent of CRISPR-Cas and the ability to easily modify the genome of diverse organisms, rat models are being increasingly developed to interrogate the genetic events underlying mammary development and tumorigenesis. Protocols for the isolation and characterization of mammary epithelial cell subpopulations have been thoroughly developed for mouse and human tissues, yet there is an increasing need for rat-specific protocols. To date, there are no standard protocols for isolating rat mammary epithelial subpopulations. Analyzing changes in the rat mammary hierarchy will help us elucidate the molecular events in breast cancer, the cells of origin for breast cancer subtypes, and the impact of the tumor microenvironment. Here we describe several methods developed for 1) rat mammary epithelial cell isolation; 2) rat mammary fibroblast isolation; 3) culturing rat mammary epithelial cells; and characterization of rat mammary cells by 4) flow cytometric analysis; and 5) immunofluorescence. Cells derived from this protocol can be used for many purposes, including RNAseq, drug studies, functional assays, gene/protein expression analyses, and image analysis.

9.
Genes (Basel) ; 11(3)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245042

RESUMO

Neurofibromatosis Type 1 (NF1)-related Malignant Peripheral Nerve Sheath Tumors (MPNST) are highly resistant sarcomas that account for significant mortality. The mechanisms of therapy resistance are not well-understood in MPNSTs, particularly with respect to kinase inhibition strategies. In this study, we aimed to quantify the impact of both the genomic context and targeted therapy on MPNST resistance using reverse phase phosphoproteome array (RPPA) analysis. We treated tumorgrafts from three genetically engineered mouse models using MET (capmatinib) and MEK (trametinib) inhibitors and doxorubicin, and assessed phosphosignaling at 4 h, 2 days, and 21 days. Baseline kinase signaling in our mouse models recapitulated an MET-addicted state (NF1-MET), P53 mutation (NF1-P53), and HGF overexpression (NF1). Following perturbation with the drug, we observed broad and redundant kinome adaptations that extended well beyond canonical RAS/ERK or PI3K/AKT/mTOR signaling. MET and MEK inhibition were both associated with an initial inflammatory response mediated by kinases in the JAK/STAT pathway and NFkB. Growth signaling predominated at the 2-day and 21-day time points as a result of broad RTK and intracellular kinase activation. Interestingly, AXL and NFkB were strongly activated at the 2-day and 21-day time points, and tightly correlated, regardless of the treatment type or genomic context. The degree of kinome adaptation observed in innately resistant tumors was significantly less than the surviving fractions of responsive tumors that exhibited a latency period before reinitiating growth. Lastly, doxorubicin resistance was associated with kinome adaptations that strongly favored growth and survival signaling. These observations confirm that MPNSTs are capable of profound signaling plasticity in the face of kinase inhibition or DNA damaging agent administration. It is possible that by targeting AXL or NFkB, therapy resistance can be mitigated.


Assuntos
Antineoplásicos/uso terapêutico , Sistema de Sinalização das MAP Quinases , Neoplasias de Bainha Neural/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Camundongos , Camundongos SCID , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias de Bainha Neural/genética , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Proteoma/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/uso terapêutico , Triazinas/administração & dosagem , Triazinas/uso terapêutico , Proteínas ras/genética , Proteínas ras/metabolismo
10.
NPJ Breast Cancer ; 4: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182054

RESUMO

The key negative regulatory gene of the RAS pathway, NF1, is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline NF1 mutations) have a substantially increased breast cancer risk at a young age and NF1 is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of NF1 in breast cancer. We utilized CRISPR-Cas9 gene editing to create Nf1 rat models to evaluate the effect of Nf1 deficiency on tumorigenesis. The resulting Nf1 indels induced highly penetrant, aggressive mammary adenocarcinomas that express estrogen receptor (ER) and progesterone receptor (PR). We identified distinct Nf1 mRNA and protein isoforms that were altered during tumorigenesis. To evaluate NF1 in human breast cancer, we analyzed genomic changes in a data set of 2000 clinically annotated breast cancers. We found NF1 shallow deletions in 25% of sporadic breast cancers, which correlated with poor clinical outcome. To identify biological networks impacted by NF1 deficiency, we constructed gene co-expression networks using weighted gene correlation network analysis (WGCNA) and identified a network connected to ESR1 (estrogen receptor). Moreover, NF1-deficient cancers correlated with established RAS activation signatures. Estrogen-dependence was verified by estrogen-ablation in Nf1 rats where rapid tumor regression was observed. Additionally, Nf1 deficiency correlated with increased estrogen receptor phosphorylation in mammary adenocarcinomas. These results demonstrate a significant role for NF1 in both NF1-related breast cancer and sporadic breast cancer, and highlight a potential functional link between neurofibromin and the estrogen receptor.

11.
Cancer Res ; 78(13): 3672-3687, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29720369

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) are highly resistant sarcomas that occur in up to 13% of individuals with neurofibromatosis type I (NF1). Genomic analysis of longitudinally collected tumor samples in a case of MPNST disease progression revealed early hemizygous microdeletions in NF1 and TP53, with progressive amplifications of MET, HGF, and EGFR To examine the role of MET in MPNST progression, we developed mice with enhanced MET expression and Nf1 ablation (Nf1fl/ko;lox-stop-loxMETtg/+;Plp-creERTtg/+ ; referred to as NF1-MET). NF1-MET mice express a robust MPNST phenotype in the absence of additional mutations. A comparison of NF1-MET MPNSTs with MPNSTs derived from Nf1ko/+;p53R172H;Plp-creERTtg/+ (NF1-P53) and Nf1ko/+;Plp-creERTtg/+ (NF1) mice revealed unique Met, Ras, and PI3K signaling patterns. NF1-MET MPNSTs were uniformly sensitive to the highly selective MET inhibitor, capmatinib, whereas a heterogeneous response to MET inhibition was observed in NF1-P53 and NF1 MPNSTs. Combination therapy of capmatinib and the MEK inhibitor trametinib resulted in reduced response variability, enhanced suppression of tumor growth, and suppressed RAS/ERK and PI3K/AKT signaling. These results highlight the influence of concurrent genomic alterations on RAS effector signaling and therapy response to tyrosine kinase inhibitors. Moreover, these findings expand our current understanding of the role of MET signaling in MPNST progression and identify a potential therapeutic niche for NF1-related MPNSTs.Significance: Longitudinal genomic analysis reveals a positive selection for MET and HGF copy number gain early in malignant peripheral nerve sheath tumor progression. Cancer Res; 78(13); 3672-87. ©2018 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Neurofibromatose 1/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Adolescente , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas , Biomarcadores Tumorais/antagonistas & inibidores , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Amplificação de Genes , Dosagem de Genes , Fator de Crescimento de Hepatócito/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Estudos Longitudinais , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triazinas/farmacologia , Triazinas/uso terapêutico
12.
Ann Transl Med ; 5(10): 205, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28603720

RESUMO

Since the initial discovery of missense MET mutations in hereditary papillary renal carcinoma (HPRC), activating MET mutations have been identified in a diverse range of human cancers. MET mutations have been identified in several functional domains including the kinase, juxtamembrane, and Sema domains. Studies of these mutations have been invaluable for our understanding of the tumor initiating activity of MET, receptor tyrosine kinase (RTK) recycling and regulation, and mechanisms of resistance to kinase inhibition. These studies also demonstrate that mutationally activated MET plays a significant role in a wide range of cancers and RTKs can promote tumor progression through diverse mechanisms. This review will cover the various MET mutations that have been identified, their mechanism of action, and the significant role that mutationally-activated MET plays in tumor initiation, progression, and therapeutic resistance.

13.
Cancer Metab ; 5: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852500

RESUMO

BACKGROUND: Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. METHODS: We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. RESULTS: TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases. CONCLUSIONS: Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients.

14.
Oncotarget ; 7(43): 69903-69915, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27655711

RESUMO

There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients.


Assuntos
Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptor Cross-Talk/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Receptores ErbB/análise , Cloridrato de Erlotinib/administração & dosagem , Feminino , Humanos , Proteínas Proto-Oncogênicas c-met/análise , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias de Mama Triplo Negativas/química
15.
Clin Cancer Res ; 22(4): 923-34, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432786

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is associated with poor clinical outcome. There is a vital need for effective targeted therapeutics for TNBC patients, yet treatment strategies are challenged by the significant intertumoral heterogeneity within the TNBC subtype and its surrounding microenvironment. Receptor tyrosine kinases (RTK) are highly expressed in several TNBC subtypes and are promising therapeutic targets. In this study, we targeted the MET receptor, which is highly expressed across several TNBC subtypes. EXPERIMENTAL DESIGN: Using the small-molecule inhibitor cabozantinib (XL184), we examined the efficacy of MET inhibition in preclinical models that recapitulate human TNBC and its microenvironment. To analyze the dynamic interactions between TNBC cells and fibroblasts over time, we utilized a 3D model referred to as MAME (Mammary Architecture and Microenvironment Engineering) with quantitative image analysis. To investigate cabozantinib inhibition in vivo, we used a novel xenograft model that expresses human HGF and supports paracrine MET signaling. RESULTS: XL184 treatment of MAME cultures of MDA-MB-231 and HCC70 cells (± HGF-expressing fibroblasts) was cytotoxic and significantly reduced multicellular invasive outgrowths, even in cultures with HGF-expressing fibroblasts. Treatment with XL184 had no significant effects on MET(neg) breast cancer cell growth. In vivo assays demonstrated that cabozantinib treatment significantly inhibited TNBC growth and metastasis. CONCLUSIONS: Using preclinical TNBC models that recapitulate the breast tumor microenvironment, we demonstrate that cabozantinib inhibition is an effective therapeutic strategy in several TNBC subtypes.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Piridinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C3H , Camundongos SCID , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 22(20): 5087-5096, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27154914

RESUMO

PURPOSE: c-Src has been shown to play a pivotal role in breast cancer progression, metastasis, and angiogenesis. In the clinic, however, the limited efficacy and high toxicity of existing c-Src inhibitors have tempered the enthusiasm for targeting c-Src. We developed a novel c-Src inhibitor (UM-164) that specifically binds the DFG-out inactive conformation of its target kinases. We hypothesized that binding the inactive kinase conformation would lead to improved pharmacologic outcomes by altering the noncatalytic functions of the targeted kinases. EXPERIMENTAL DESIGN: We have analyzed the anti-triple-negative breast cancer (TNBC) activity of UM-164 in a comprehensive manner that includes in vitro cell proliferation, migration, and invasion assays (including a novel patient-derived xenograft cell line, VARI-068), along with in vivo TNBC xenografts. RESULTS: We demonstrate that UM-164 binds the inactive kinase conformation of c-Src. Kinome-wide profiling of UM-164 identified that Src and p38 kinase families were potently inhibited by UM-164. We further demonstrate that dual c-Src/p38 inhibition is superior to mono-inhibition of c-Src or p38 alone. We demonstrate that UM-164 alters the cell localization of c-Src in TNBC cells. In xenograft models of TNBC, UM-164 resulted in a significant decrease of tumor growth compared with controls, with limited in vivo toxicity. CONCLUSIONS: In contrast with c-Src kinase inhibitors used in the clinic (1, 2), we demonstrate in vivo efficacy in xenograft models of TNBC. Our results suggest that the dual activity drug UM-164 is a promising lead compound for developing the first targeted therapeutic strategy against TNBC. Clin Cancer Res; 22(20); 5087-96. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteína Tirosina Quinase CSK , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Ligação Proteica/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncogene ; 22(11): 1730-6, 2003 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-12642876

RESUMO

Liver cancer is very common worldwide and the rates of hepatocellular carcinoma (HCC) have increased by over 70% in the last 2 decades in the US. Late diagnosis, because of the lack of clinical symptoms, and decreased hepatic function, because of underlying hepatic disease, lead to the extremely high mortality rates associated with HCC. Clearly, the identification of markers that are expressed early in the development of HCC and that are easily detected in high-risk patients would aid in early diagnosis and increased survival. We present the cloning and characterization of a novel gene, CRG-L2 (Cancer related gene-Liver 2), which displays high expression in murine and human hepatocellular carcinomas. Using in situ hybridization, we show that CRG-L2 mRNA levels are increased early during the development of liver tumors in C3H/HeJ mice, and that in normal tissues CRG-L2 mRNA is restricted to the murine testis and human placenta. Its restricted expression in normal tissues and unique early upregulation during tumor development make CRG-L2 an excellent candidate as a new clinical marker of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Hepáticas/patologia , Proteínas/metabolismo , Sequência de Bases , Primers do DNA , DNA Complementar , Humanos , Hibridização In Situ , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana , Proteínas do Tecido Nervoso , RNA Mensageiro/genética , Regulação para Cima
18.
Artigo em Inglês | MEDLINE | ID: mdl-25759599

RESUMO

Breast cancer is a complex and heterogeneous disease. Signaling by estrogen receptor (ER), progesterone receptor (PR), and/or human EGF-like receptor 2 (HER2) is a main driver in the development and progression of a large majority of breast tumors. Molecular characterization of primary tumors has identified major subtypes that correlate with ER/PR/HER2 status, and also subgroup divisions that indicate other molecular and cellular features of the tumors. While some of these research findings have been incorporated into clinical practice, several challenges remain to improve breast cancer management and patient survival, for which the integration of novel biomarkers into current practice should be beneficial. microRNAs (miRNAs) are a class of short non-coding regulatory RNAs with an etiological contribution to breast carcinogenesis. miRNA-based diagnostic and therapeutic applications are rapidly emerging as novel potential approaches to manage and treat breast cancer. Rapid technological development enables specific and sensitive detection of individual miRNAs or the entire miRNome in tissues, blood, and other biological specimens from breast cancer patients. This review focuses on recent miRNA research and its potential to address unmet clinical needs and challenges. The four sections presented discuss miRNA findings in the context of the following clinical challenges: biomarkers for early detection; prognostic and predictive biomarkers for treatment decisions using targeted therapies against ER and HER2; diagnostic and prognostic biomarkers for subgrouping of triple-negative breast cancer, for which there are currently no targeted therapies; and biomarkers for monitoring and characterization of metastatic breast cancer. The review concludes with a critical analysis of the current state of miRNA breast cancer research and the need for further studies using large patient cohorts under well-controlled conditions before considering the clinical implementation of miRNA biomarkers.

20.
Artigo em Inglês | MEDLINE | ID: mdl-23818496

RESUMO

Since its discovery more than 25 years ago, numerous studies have established that the MET receptor is unique among tyrosine kinases. Signaling through MET is necessary for normal development and for the progression of a wide range of human cancers. MET activation has been shown to drive numerous signaling pathways; however, it is not clear how MET signaling mediates diverse cellular responses such as motility, invasion, growth, and angiogenesis. Great strides have been made in understanding the pleotropic aspects of MET signaling using three-dimensional molecular structures, cell culture systems, human tumors, and animal models. These combined approaches have driven the development of MET-targeted therapeutics that have shown promising results in the clinic. Here we examine the unique features of MET and hepatocyte growth factor/scatter factor (HGF/SF) structure and signaling, mutational activation, genetic mouse models of MET and HGF/SF, and MET-targeted therapeutics.


Assuntos
Carcinogênese , Proteínas Proto-Oncogênicas c-met/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Modelos Biológicos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA