Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phytopathology ; 114(9): 2096-2112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875177

RESUMO

The Fusarium head blight (FHB) pathogen Fusarium graminearum produces the trichothecene mycotoxin deoxynivalenol and reduces wheat yield and grain quality. Spring wheat (Triticum aestivum) genotype CB037 was transformed with constitutive expression (CE) constructs containing sorghum (Sorghum bicolor) genes encoding monolignol biosynthetic enzymes caffeoyl coenzyme A (CoA) 3-O-methyltransferase (SbCCoAOMT), 4-coumarate-CoA ligase (Sb4CL), or coumaroyl shikimate 3-hydroxylase (SbC3'H) or monolignol pathway transcriptional activator SbMyb60. Spring wheats were screened for type I (resistance to initial infection, using spray inoculations) and type II (resistance to spread within the spike, using single-floret inoculations) resistances in the field (spray) and greenhouse (spray and single floret). Following field inoculations, disease index, percentage of Fusarium-damaged kernels (FDK), and deoxynivalenol measurements of CE plants were similar to or greater than those of CB037. For greenhouse inoculations, the area under the disease progress curve (AUDPC) and FDK were determined. Following screens, focus was placed on two each of SbC3'H and SbCCoAOMT CE lines because of trends toward a decreased AUDPC and FDK observed following single-floret inoculations. These four lines were as susceptible as CB037 following spray inoculations. However, single-floret inoculations showed that these CE lines had a significantly reduced AUDPC (P < 0.01) and FDK (P ≤ 0.02) compared with CB037, indicating improved type II resistance. None of these CE lines had increased acid detergent lignin compared with CB037, indicating that lignin concentration may not be a major factor in FHB resistance. The SbC3'H and SbCCoAOMT CE lines are valuable for investigating phenylpropanoid-based resistance to FHB.


Assuntos
Fusarium , Doenças das Plantas , Triticum , Fusarium/genética , Fusarium/fisiologia , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Tricotecenos/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Resistência à Doença/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/microbiologia , Sorghum/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Mol Plant Microbe Interact ; 33(1): 108-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31687913

RESUMO

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.


Assuntos
Resistência à Doença , Plantas Geneticamente Modificadas , Triticum , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Potyviridae/fisiologia , Interferência de RNA , Triticum/genética , Triticum/virologia
3.
J Sci Food Agric ; 100(6): 2579-2584, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975391

RESUMO

BACKGROUND: Previous research has suggested that proteins and other quality parameters of wheats may have changed over a century of wheat breeding. These changes may affect protein digestibility. The in vitro protein digestibility of breads made with 21 cultivars of wheat introduced or released in the USA between 1870 and 2013 was therefore evaluated. RESULTS: Protein digestibility increased with release year, but was not normally distributed; three older cultivars had significantly lower digestibility than the other cultivars: 42.0 ± 0.3 mol% (primary amino N/total N) versus 34.7 ± 0.7 mol%; P < 0.001. High molecular weight (MW) protein fractions increased and low MW protein fractions decreased with release year, but these changes were not related to protein digestibility. Thus, other differences in protein composition or other flour components may contribute to diminished digestibility of the three older cultivars. CONCLUSIONS: This study identified differences in protein digestibility among wheat cultivars that may have important implications for human nutrition. Further investigation is required to determine the specific characteristics that differentiate high- and low-digestibility wheat cultivars. © 2020 Society of Chemical Industry.


Assuntos
Digestão , Proteínas de Vegetais Comestíveis/análise , Triticum/química , Pão/análise , Farinha , Proteínas de Vegetais Comestíveis/química , Triticum/classificação
4.
Plant Dis ; 103(5): 972-983, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30840842

RESUMO

Hexaploid waxy wheat (Triticum aestivum L.) has null mutations in Wx genes and grain lacking amylose with increased digestibility and usability for specialty foods. The waxy cultivar Mattern is susceptible to Fusarium head blight (FHB) caused by Fusarium graminearum species complex, which produces the mycotoxin deoxynivalenol (DON). In experiment 1, conducted during low natural FHB, grain from waxy breeding lines, Mattern, and wild-type breeding lines and cultivars were assessed for Fusarium infection and DON concentration. Nine Fusarium species and species complexes were detected from internally infected (disinfested) grain; F. graminearum infections were not different between waxy and wild-type. Surface- and internally infected grain (nondisinfested) had greater numbers of Fusarium isolates across waxy versus wild-type, but F. graminearum-like infections were similar; however, DON levels were higher in waxy. In experiment 2, conducted during a timely epidemic, disease severity, Fusarium-damaged kernels (FDK), and DON were assessed for waxy breeding lines, Mattern, and wild-type cultivars. Disease severity and FDK were not significantly different from wild-type, but DON was higher in waxy than wild-type lines. Across both experiments, waxy breeding lines, Plant Introductions 677876 and 677877, responded similarly to FHB as moderately resistant wild-type cultivar Overland, showing promise for breeding advanced waxy cultivars with reduced FHB susceptibility.


Assuntos
Fusarium , Triticum , Amilose , Resistência à Doença/fisiologia , Fusarium/enzimologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia
5.
Mol Plant Microbe Interact ; 30(12): 974-983, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28840785

RESUMO

Previously, we reported that coat protein (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. In this study, we demonstrated that WSMV mutants with deletion of CP amino acids 58 to 84 but not of 36 to 57 induced severe chlorotic streaks and spots, followed by acute chlorosis in wheat, maize, barley, and rye compared with mild to moderate chlorotic streaks and mosaic symptoms by wild-type virus. Deletion of CP amino acids 58 to 84 from the WSMV genome accelerated cell-to-cell movement, with increased accumulation of genomic RNAs and CP, compared with the wild-type virus. Microscopic examination of wheat tissues infected by green fluorescent protein-tagged mutants revealed that infection by mutants lacking CP amino acids 58 to 84 caused degradation of chloroplasts, resulting in acute macroscopic chlorosis. The profile of CP-specific proteins was altered in wheat infected by mutants causing acute chlorosis, compared with mutants eliciting wild-type symptoms. All deletion mutants accumulated CP-specific major protein similarly to that in wild-type virus; however, mutants that elicit acute chlorosis failed to accumulate a 31-kDa minor protein compared with wild-type virus or mutants lacking amino acids 36 to 57. Taken together, these data suggest that deletion of CP amino acids 58 to 84 from the WSMV genome enhanced accumulation of CP and genomic RNA, altered CP-specific protein profiles, and caused severe symptom phenotypes in multiple cereal hosts.


Assuntos
Proteínas do Capsídeo/metabolismo , Grão Comestível/virologia , Deleção de Genes , Doenças das Plantas/virologia , Potyviridae/metabolismo , Aminoácidos/metabolismo , Cloroplastos/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Potyviridae/genética , RNA Viral/metabolismo , Triticum/virologia
6.
Mol Plant Microbe Interact ; 29(9): 724-738, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27551888

RESUMO

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.


Assuntos
Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Potyviridae/fisiologia , Triticum/genética , Transporte Biológico , Genes Reporter , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Temperatura , Triticum/imunologia , Triticum/virologia
7.
J Virol ; 88(20): 11834-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100845

RESUMO

Eriophyid mite-transmitted, multipartite, negative-sense RNA plant viruses with membrane-bound spherical virions are classified in the genus Emaravirus. We report here that the eriophyid mite-transmitted Wheat mosaic virus (WMoV), an Emaravirus, contains eight genomic RNA segments, the most in a known negative-sense RNA plant virus. Remarkably, two RNA 3 consensus sequences, encoding the nucleocapsid protein, were found with 12.5% sequence divergence, while no heterogeneity was observed in the consensus sequences of additional genomic RNA segments. The RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid, and P4 proteins of WMoV exhibited limited sequence homology with the orthologous proteins of other emaraviruses, while proteins encoded by additional genomic RNA segments displayed no significant homology with proteins reported in GenBank, suggesting that the genus Emaravirus evolved further with a divergent octapartite genome. Phylogenetic analyses revealed that WMoV formed an evolutionary link between members of the Emaravirus genus and the family Bunyaviridae. Furthermore, genomic-length virus- and virus-complementary (vc)-sense strands of all WMoV genomic RNAs accumulated asymmetrically in infected wheat, with 10- to 20-fold more virus-sense genomic RNAs than vc-sense RNAs. These data further confirm the octapartite negative-sense polarity of the WMoV genome. In WMoV-infected wheat, subgenomic-length mRNAs of vc sense were detected for genomic RNAs 3, 4, 7, and 8 but not for other RNA species, suggesting that the open reading frames present in the complementary sense of genomic RNAs are expressed through subgenomic- or near-genomic-length vc-sense mRNAs. Importance: Wheat mosaic virus (WMoV), an Emaravirus, is the causal agent of High Plains disease of wheat and maize. In this study, we demonstrated that the genome of WMoV comprises eight negative-sense RNA segments with an unusual sequence polymorphism in an RNA encoding the nucleocapsid protein but not in the additional genomic RNA segments. WMoV proteins displayed weak or no homology with reported emaraviruses, suggesting that the genus Emaravirus further evolved with a divergent octapartite genome. The current study also examined the profile of WMoV RNA accumulation in wheat and provided evidence for the synthesis of subgenomic-length mRNAs of virus complementary sense. This is the first report to demonstrate that emaraviruses produce subgenomic-length mRNAs that are most likely utilized for genome expression. Importantly, this study facilitates the examination of gene functions and virus diversity and the development of effective diagnostic methods and management strategies for an economically important but poorly understood virus.


Assuntos
Heterogeneidade Genética , Ácaros/virologia , Proteínas do Nucleocapsídeo/química , Vírus de Plantas/genética , RNA Viral/genética , Animais , Northern Blotting , Eletroforese em Gel de Poliacrilamida
8.
Phytopathology ; 105(11): 1496-505, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26214124

RESUMO

Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.


Assuntos
Interações Hospedeiro-Patógeno , Potyviridae/patogenicidade , Triticum/virologia , Animais , Vetores Artrópodes , Mutação da Fase de Leitura , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Ácaros , Doenças das Plantas , Potyviridae/genética , Análise de Sequência de RNA , Proteína Vermelha Fluorescente
9.
Mol Biol Evol ; 30(1): 109-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936718

RESUMO

Waxy mutants, in which endosperm starch contains ~100% amylopectin rather than the wild-type composition of ~70% amylopectin and ~30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties is concentrated in east Asia, where there is a culinary preference for glutinous-textured foods that may have developed from ancient food processing traditions. The waxy phenotype results from mutations in the GBSSI gene, which catalyzes amylose synthesis. Broomcorn or proso millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which spread across Eurasia early in prehistory. Recent phylogeographic analysis has shown strong genetic structuring that likely reflects ancient expansion patterns. Broomcorn millet is highly unusual in being an allotetraploid cereal with fully waxy varieties. Previous work characterized two homeologous GBSSI loci, with multiple alleles at each, but could not determine whether both loci contributed to GBSSI function. We first tested the relative contribution of the two GBSSI loci to amylose synthesis and second tested the association between GBSSI alleles and phylogeographic structure inferred from simple sequence repeats (SSRs). We evaluated the phenotype of all known GBSSI genotypes in broomcorn millet by assaying starch composition and protein function. The results showed that the GBSSI-S locus is the major locus controlling endosperm amylose content, and the GBSSI-L locus has strongly reduced synthesis capacity. We genotyped 178 individuals from landraces from across Eurasia for the 2 GBSSI and 16 SSR loci and analyzed phylogeographic structuring and the geographic and phylogenetic distribution of GBSSI alleles. We found that GBSSI alleles have distinct spatial distributions and strong associations with particular genetic clusters defined by SSRs. The combination of alleles that results in a partially waxy phenotype does not exist in landrace populations. Our data suggest that broomcorn millet is a system in the process of becoming diploidized for the GBSSI locus responsible for grain amylose. Mutant alleles show some exchange between genetic groups, which was favored by selection for the waxy phenotype in particular regions. Partially waxy phenotypes were probably selected against-this unexpected finding shows that better understanding is needed of the human biology of this phenomenon that distinguishes cereal use in eastern and western cultures.


Assuntos
Endosperma/química , Genoma de Planta , Panicum/química , Panicum/genética , Fenótipo , Sintase do Amido/genética , Alelos , Amilopectina/biossíntese , Amilose/biossíntese , Evolução Molecular , Loci Gênicos , Genótipo , Repetições de Microssatélites , Mutação , Filogeografia , Sintase do Amido/metabolismo , Tetraploidia
12.
Phytopathology ; 100(3): 230-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20128696

RESUMO

Triticum mosaic virus (TriMV), the type member of the newly proposed Poacevirus genus, and Wheat streak mosaic virus (WSMV), the type member of Tritimovirus genus of the family Potyviridae, infect wheat naturally in the Great Plains and are transmitted by wheat curl mites. In this study, we examined the ability of these viruses to infect selected cereal hosts, and found several differential hosts between TriMV and WSMV. Additionally, we examined the interaction between WSMV and TriMV in three wheat cultivars at two temperature regimens (19 and 20 to 26 degrees C), and quantified the virus concentration in single and double infections by real-time reverse-transcription polymerase chain reaction. Double infections in wheat cvs. Arapahoe and Tomahawk at both temperature regimens induced disease synergism with severe leaf deformation, bleaching, and stunting, with a 2.2- to 7.4-fold increase in accumulation of both viruses over single infections at 14 days postinoculation (dpi). However, at 28 dpi, in double infections at 20 to 26 degrees C, TriMV concentration was increased by 1.4- to 1.8-fold in Arapahoe and Tomahawk but WSMV concentration was decreased to 0.5-fold. WSMV or TriMV replicated poorly in Mace at 19 degrees C with no synergistic interaction whereas both viruses accumulated at moderate levels at 20 to 26 degrees C and induced mild to moderate disease synergism in doubly infected Mace compared with Arapahoe and Tomahawk. Co-infections in Mace at 20 to 26 degrees C caused increased TriMV accumulation at 14 and 28 dpi by 2.6- and 1.4-fold and WSMV accumulated at 0.5- and 1.6-fold over single infections, respectively. Our data suggest that WSMV and TriMV induced cultivar-specific disease synergism in Arapahoe, Tomahawk, and Mace, and these findings could have several implications for management of wheat viruses in the Great Plains.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Triticum/genética , Triticum/virologia , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Viroses
13.
Plant Genome ; 11(3)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30512033

RESUMO

The development of inexpensive, whole-genome profiling enables a transition to allele-based breeding using genomic prediction models. These models consider alleles shared between lines to predict phenotypes and select new lines based on estimated breeding values. This approach can leverage highly unbalanced datasets that are common to breeding programs. The Southern Regional Performance Nursery (SRPN) is a public nursery established by the USDA-ARS in 1931 to characterize performance and quality of near-release wheat ( L.) varieties from breeding programs in the US Central Plains. New entries are submitted annually and can be re-entered only once. The trial is grown at >30 locations each year and lines are evaluated for grain yield, disease resistance, and agronomic traits. Overall genetic gain is measured across years by including common check cultivars for comparison. We have generated whole-genome profiles via genotyping-by-sequencing (GBS) for 939 SPRN entries dating back to 1992 to explore the potential use of the nursery as a genomic selection (GS) training population (TP). The GS prediction models across years (average = 0.33) outperformed year-to-year phenotypic correlation for yield ( = 0.27) for a majority of the years evaluated, suggesting that genomic selection has the potential to outperform low heritability selection on yield in these highly variable environments. We also examined the predictability of programs using both program-specific and whole-set TPs. Generally, the predictability of a program was similar with both approaches. These results suggest that wheat breeding programs can collaboratively leverage the immense datasets that are generated from regional testing networks.


Assuntos
Melhoramento Vegetal , Triticum/genética , Conjuntos de Dados como Assunto , Genoma de Planta , Genótipo , Modelos Genéticos , Fenótipo , Estados Unidos
14.
Virology ; 518: 152-162, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499560

RESUMO

High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed the transitive pathway of RNA silencing. Additionally, a Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) mutant lacking the suppressor of RNA silencing (ΔP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient WSMV. Furthermore, HPWMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV encodes two suppressors of RNA silencing.


Assuntos
Genoma Viral , Vírus do Mosaico/genética , Interferência de RNA/fisiologia , RNA Viral/genética , Triticum/virologia , Proteínas Virais/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Vírus do Mosaico/patogenicidade , Doenças das Plantas/virologia , Nicotiana/virologia , Proteínas Virais/genética
15.
Talanta ; 146: 496-506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695296

RESUMO

Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the United States, the grain trade, milling, and processing industries seek to have a rapid technique to ensure the purity of identity preserved waxy wheat lots. Near infrared (NIR) reflectance spectroscopy, a technique widely used in the cereals industry for proximate analysis, is a logical candidate for measuring contamination level and thus is the subject of this study. Two sets of wheat samples, harvested, prepared and scanned one year apart, were used to evaluate the NIR concept. One year consisted of nine pairs of conventional:waxy preparations, with each preparation consisting of 29 binary mixtures ranging in conventional wheat fraction (by weight) of 0-100% (261 spectral samples). The second year was prepared in the same fashion, with 12 preparations, thus producing 348 spectral samples. One year's samples were controlled for protein content and moisture level between pair components in order to avoid the basis for the conventional wheat fraction models being caused by something other than spectral differences attributed to waxy and nonwaxy endosperm. Likewise the second year was controlled by selection of conventional wheat for mixture preparation based on either protein content or cluster analysis of principal components of candidate spectra. Partial least squares regression, one and two-term linear regression, and support vector machine regression models were examined. Validation statistics arising from sets within the same year or across years were remarkably similar, as were those among the three regression types. A single wavelength on second derivative transformed spectra, namely 2290 nm, was effective at estimating the mixture level by weight, with standard errors of performance in the 6-9% range. Thus, NIR spectroscopy may be used for measuring conventional hard wheat 'contamination' in waxy wheat at mixture levels above 10% w/w.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/métodos , Amido/química , Triticum/química , Ceras/química
16.
Virology ; 492: 92-100, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26914507

RESUMO

An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral , Filogenia , Potyviridae/genética , RNA Viral/genética , Proteínas Virais/genética , Evolução Biológica , Genes , Variação Genética , Genótipo , Doenças das Plantas/virologia , Potyviridae/classificação , Análise de Sequência de RNA , Inoculações Seriadas , Triticum/virologia
17.
Appl Spectrosc ; 57(12): 1517-27, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14686774

RESUMO

Use of near-infrared (NIR) diffuse reflectance on ground wheat meal for prediction of protein content is a well-accepted practice. Although protein content has a strong bearing on the suitability of wheat (Triticum aestivum L.) for processed foods, wheat quality, as largely influenced by the configuration and conformation of the monomeric and polymeric endosperm storage proteins, is also of great importance to the food industry. The measurement of quality by NIR, however, has been much less successful. The present study examines the effects and trends of applying mathematical transformations (pretreatments) to NIR spectral data before partial least-squares (PLS) regression. Running mean smooths, Savitzky-Golay second derivatives, multiplicative scatter correction, and standard normal variate transformation, with and without detrending, were systematically applied to an extensive set of hard red winter wheat and hard white wheat grown over two seasons. The studied properties were protein content, sodium dodecyl sulfate (SDS) sedimentation volume, number of hours during grain fill at temperature <24 degrees C, and number of hours during grain fill at temperature >32 degrees C. The size of the convolution window used to perform a smooth or second derivative was also examined. The results indicate that for easily modeled properties such as protein content, the importance of pretreatment was lessened, whereas for the more difficult-to-model properties, such as SDS sedimentation volume, wide-window (>20 points) smooth or derivative convolutions were important in maximizing calibration performance. By averaging 30 PLS cross-validation trial statistics (standard error) for each property, we were able to ascertain the inherent modeling ability of each wheat property.


Assuntos
Proteínas de Plantas/análise , Triticum/química , Calibragem , Interpretação Estatística de Dados , Indústria Alimentícia/métodos , Análise dos Mínimos Quadrados , Nebraska , Reprodutibilidade dos Testes , Estações do Ano
18.
PLoS One ; 9(11): e111577, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365307

RESUMO

Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.


Assuntos
Interações Hospedeiro-Patógeno/genética , Vírus do Mosaico/genética , Pequeno RNA não Traduzido/genética , Transcriptoma , Triticum/genética , Triticum/virologia , Coinfecção , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA de Plantas , RNA Interferente Pequeno/genética , RNA Viral
19.
J Agric Food Chem ; 59(8): 4002-8, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21401107

RESUMO

Wheat (Triticum aestivum L.) breeding programs are currently developing varieties that are free of amylose (waxy wheat), as well as genetically intermediate (partial waxy) types. Successful introduction of waxy wheat varieties into commerce is predicated on a rapid methodology at the commodity point of sale that can test for the waxy condition. Near-infrared (NIR) reflectance spectroscopy, one such technology, was applied to a diverse set of hard winter (hexaploid) wheat breeders' lines representing all eight genotypic combinations of alleles at the wx-A1, wx-B1, and wx-D1 loci. These loci encode granule-bound starch synthase, the enzyme responsible for amylose synthesis. Linear discriminant analysis of principal components scores 1-4 was successful in identifying the fully waxy samples at typically greater than 90% accuracy; however, accuracy was reduced for partial and wild-type genotypes. It is suggested that the spectral sensitivity to waxiness is due to (1) the lipid-amylose complex which diminishes with waxiness, (2) physical differences in endosperm that affect light scatter, or (3) changes in starch crystallinity.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/métodos , Amido/química , Triticum/química , Genótipo , Triticum/genética
20.
J Agric Food Chem ; 57(15): 7030-8, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19594158

RESUMO

To realize the full potential of waxy wheat (Triticum aestivum L.), the wet milling properties of waxy wheat flours including their dough-mixing properties were investigated. Flours of six waxy hard wheats, one normal hard wheat ('Karl 92'), and one partial waxy hard wheat ('Trego') were fractionated by the dough-washing (Martin) process, and the yields and recoveries of starch and gluten were compared. When waxy and normal wheat starches each were blended with a wheat gluten to give a mixture containing 14.5% protein, they gave very different mixograms even though the protein was the same in those blends. Waxy wheat starch absorbed more water than normal wheat starch, which apparently retarded hydration of gluten and dough development. Higher water content had to be used for some waxy wheat flours to develop optimum dough. Washing waxy wheat flour dough under a stream of water caused dough to become slack, spread out more on the sieve, and break apart into several pieces, which when thoroughly washed, coalesced into an elastic dough like the controls. By mixing a weak dough with 2% NaCl solution or by adding hemicellulase, stickiness of the dough subsided during the washing step and thereby improved the recovery of the gluten and starch fractions.


Assuntos
Farinha/análise , Manipulação de Alimentos , Triticum/química , Glutens/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA