RESUMO
Efforts to implement and evaluate genome sequencing (GS) as a screening tool for newborns and infants are expanding worldwide. The first iteration of the BabySeq Project (2015-2019), a randomized controlled trial of newborn sequencing, produced novel evidence on medical, behavioral, and economic outcomes. The second iteration of BabySeq, which began participant recruitment in January 2023, examines GS outcomes in a larger, more diverse cohort of more than 500 infants up to one year of age recruited from pediatric clinics at several sites across the United States. The trial aims for families who self-identify as Black/African American or Hispanic/Latino to make up more than 50% of final enrollment, and key aspects of the trial design were co-developed with a community advisory board. All enrolled families receive genetic counseling and a family history report. Half of enrolled infants are randomized to receive GS with comprehensive interpretation of pathogenic and likely pathogenic variants in more than 4,300 genes associated with childhood-onset and actionable adult-onset conditions, as well as larger-scale chromosomal copy number variants classified as pathogenic or likely pathogenic. GS result reports include variants associated with disease (Mendelian disease risks) and carrier status of autosomal-recessive and X-linked disorders. Investigators evaluate the utility and impacts of implementing a GS screening program in a diverse cohort of infants using medical record review and longitudinal parent surveys. In this perspective, we describe the rationale for the second iteration of the BabySeq Project, the outcomes being assessed, and the key decisions collaboratively made by the study team and community advisory board.
Assuntos
Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos de Coortes , Aconselhamento Genético , Testes Genéticos/métodos , Genoma Humano , Triagem Neonatal , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
The differential performance of polygenic risk scores (PRSs) by group is one of the major ethical barriers to their clinical use. It is also one of the main practical challenges for any implementation effort. The social repercussions of how people are grouped in PRS research must be considered in communications with research participants, including return of results. Here, we outline the decisions faced and choices made by a large multi-site clinical implementation study returning PRSs to diverse participants in handling this issue of differential performance. Our approach to managing the complexities associated with the differential performance of PRSs serves as a case study that can help future implementers of PRSs to plot an anticipatory course in response to this issue.
Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Fatores de Risco , Estudo de Associação Genômica Ampla , Medição de Risco , Testes Genéticos/métodos , Estratificação de Risco GenéticoRESUMO
BACKGROUND: The effect of a liberal transfusion strategy as compared with a restrictive strategy on outcomes in critically ill patients with traumatic brain injury is unclear. METHODS: We randomly assigned adults with moderate or severe traumatic brain injury and anemia to receive transfusion of red cells according to a liberal strategy (transfusions initiated at a hemoglobin level of ≤10 g per deciliter) or a restrictive strategy (transfusions initiated at ≤7 g per deciliter). The primary outcome was an unfavorable outcome as assessed by the score on the Glasgow Outcome Scale-Extended at 6 months, which we categorized with the use of a sliding dichotomy that was based on the prognosis of each patient at baseline. Secondary outcomes included mortality, functional independence, quality of life, and depression at 6 months. RESULTS: A total of 742 patients underwent randomization, with 371 assigned to each group. The analysis of the primary outcome included 722 patients. The median hemoglobin level in the intensive care unit was 10.8 g per deciliter in the group assigned to the liberal strategy and 8.8 g per deciliter in the group assigned to the restrictive strategy. An unfavorable outcome occurred in 249 of 364 patients (68.4%) in the liberal-strategy group and in 263 of 358 (73.5%) in the restrictive-strategy group (adjusted absolute difference, restrictive strategy vs. liberal strategy, 5.4 percentage points; 95% confidence interval, -2.9 to 13.7). Among survivors, a liberal strategy was associated with higher scores on some but not all the scales assessing functional independence and quality of life. No association was observed between the transfusion strategy and mortality or depression. Venous thromboembolic events occurred in 8.4% of the patients in each group, and acute respiratory distress syndrome occurred in 3.3% and 0.8% of patients in the liberal-strategy and restrictive-strategy groups, respectively. CONCLUSIONS: In critically ill patients with traumatic brain injury and anemia, a liberal transfusion strategy did not reduce the risk of an unfavorable neurologic outcome at 6 months. (Funded by the Canadian Institutes of Health Research and others; HEMOTION ClinicalTrials.gov number, NCT03260478.).
Assuntos
Anemia , Lesões Encefálicas Traumáticas , Transfusão de Eritrócitos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anemia/sangue , Anemia/etiologia , Anemia/terapia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Estado Terminal , Depressão/etiologia , Transfusão de Eritrócitos/efeitos adversos , Transfusão de Eritrócitos/métodos , Escala de Resultado de Glasgow , Hemoglobinas/análise , Qualidade de VidaRESUMO
Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis1-3. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets4,5. The natural compound darobactin targets the bacterial insertase BamA6-the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins7-13. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid ß-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Secundária de ProteínaRESUMO
Genome sequencing is increasingly used in research and integrated into clinical care. In the research domain, large-scale analyses, including whole genome sequencing with variant interpretation and curation, virtually guarantee identification of variants that are pathogenic or likely pathogenic and actionable. Multiple guidelines recommend that findings associated with actionable conditions be offered to research participants in order to demonstrate respect for autonomy, reciprocity, and participant interests in health and privacy. Some recommendations go further and support offering a wider range of findings, including those that are not immediately actionable. In addition, entities covered by the US Health Insurance Portability and Accountability Act (HIPAA) may be required to provide a participant's raw genomic data on request. Despite these widely endorsed guidelines and requirements, the implementation of return of genomic results and data by researchers remains uneven. This article analyzes the ethical and legal foundations for researcher duties to offer adult participants their interpreted results and raw data as the new normal in genomic research.
Assuntos
Genômica , Sequenciamento Completo do Genoma , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Humanos , United States Food and Drug Administration , Estados Unidos , Armazenamento e Recuperação da Informação , Health Insurance Portability and Accountability ActRESUMO
Polygenic risk scores (PRSs) hold promise for disease risk assessment and prevention. The Genomic Medicine at Veterans Affairs (GenoVA) Study is addressing three main challenges to the clinical implementation of PRSs in preventive care: defining and determining their clinical utility, implementing them in time-constrained primary care settings, and countering their potential to exacerbate healthcare disparities. The study processes used to test patients, report their PRS results to them and their primary care providers (PCPs), and promote the use of those results in clinical decision-making are modeled on common practices in primary care. The following diseases were chosen for their prevalence and familiarity to PCPs: coronary artery disease; type 2 diabetes; atrial fibrillation; and breast, colorectal, and prostate cancers. A randomized clinical trial (RCT) design and primary outcome of time-to-new-diagnosis of a target disease bring methodological rigor to the question of the clinical utility of PRS implementation. The study's pragmatic RCT design enhances its relevance to how PRS might reasonably be implemented in primary care. Steps the study has taken to promote health equity include the thoughtful handling of genetic ancestry in PRS construction and reporting and enhanced recruitment strategies to address underrepresentation in research participation. To date, enhanced recruitment efforts have been both necessary and successful: participants of underrepresented race and ethnicity groups have been less likely to enroll in the study than expected but ultimately achieved proportional representation through targeted efforts. The GenoVA Study experience to date offers insights for evaluating the clinical utility of equitable PRS implementation in adult primary care.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Adulto , Humanos , Masculino , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Atenção Primária à Saúde , Neoplasias da Próstata/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Fatores de RiscoRESUMO
Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.
Assuntos
Testes Genéticos , Genoma Humano , Humanos , Recém-Nascido , Triagem Neonatal , Genômica , Sequenciamento do ExomaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.
Assuntos
Triagem Neonatal , Medicina de Precisão , Criança , Estado Terminal , Testes Genéticos/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Estudos RetrospectivosRESUMO
Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.
Assuntos
Monitoramento Ambiental , Metano/análise , Gerenciamento de Resíduos , California , Efeito Estufa , Esterco , Metano/química , Metano/metabolismo , Gás Natural , Indústria de Petróleo e Gás/métodos , Petróleo , Águas ResiduáriasRESUMO
The current need for novel antibiotics is especially acute for drug-resistant Gram-negative pathogens1,2. These microorganisms have a highly restrictive permeability barrier, which limits the penetration of most compounds3,4. As a result, the last class of antibiotics that acted against Gram-negative bacteria was developed in the 1960s2. We reason that useful compounds can be found in bacteria that share similar requirements for antibiotics with humans, and focus on Photorhabdus symbionts of entomopathogenic nematode microbiomes. Here we report a new antibiotic that we name darobactin, which was obtained using a screen of Photorhabdus isolates. Darobactin is coded by a silent operon with little production under laboratory conditions, and is ribosomally synthesized. Darobactin has an unusual structure with two fused rings that form post-translationally. The compound is active against important Gram-negative pathogens both in vitro and in animal models of infection. Mutants that are resistant to darobactin map to BamA, an essential chaperone and translocator that folds outer membrane proteins. Our study suggests that bacterial symbionts of animals contain antibiotics that are particularly suitable for development into therapeutics.
Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Fenilpropionatos/isolamento & purificação , Fenilpropionatos/farmacologia , Animais , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Nematoides/microbiologia , Óperon/genética , Photorhabdus/química , Photorhabdus/genética , Photorhabdus/isolamento & purificação , Especificidade por Substrato , SimbioseRESUMO
Understanding, prioritizing, and mitigating methane (CH4) emissions requires quantifying CH4 budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH4 h-1) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits. We compare these point source emissions to total basin CH4 fluxes derived from inversion of Sentinel-5p satellite CH4 observations. Across basins, point sources make up on average 40% of the regional flux. We sampled some basins several times across multiple months and years and find a distinct bimodal structure to emission timescales: the total point source budget is split nearly in half by short-lasting and long-lasting emission events. With the increasing airborne and satellite observing capabilities planned for the near future, tiered observing systems will more fully quantify and attribute CH4 emissions from facility to regional scales, which is needed to effectively and efficiently reduce methane emissions.
Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Metano/análise , Estados UnidosRESUMO
The term sample dependence describes the troublesome tendency of nominally equivalent samples to exhibit different physical properties. High entropy oxides (HEOs) are a class of materials where sample dependence has the potential to be particularly profound due to their inherent chemical complexity. In this work, we prepare a spinel HEO of identical nominal composition by five distinct methods, spanning a range of thermodynamic and kinetic conditions: solid state, high pressure, hydrothermal, molten salt, and combustion syntheses. By structurally characterizing these five samples across all length scales with a variety of X-ray methods, we find that while the average structure is unaltered, the samples vary significantly in their local structures and their microstructures. The most profound differences are observed at intermediate length scales, both in terms of crystallite morphology and cation homogeneity. As revealed by X-ray fluorescence microscopy ideal cation homogeneity is achieved only in the case of combustion synthesis. These structural differences in turn significantly alter the observed functional properties, which we demonstrate via characterization of their magnetic response. While ferrimagnetic order is retained across all five samples, the sharpness of the transition, the size of the saturated moment, and the coercivity all show marked variations with synthesis method. We conclude that the chemical flexibility inherent to HEOs is complemented by strong synthesis method dependence, providing another axis along which to optimize these materials for a wide range of applications.
RESUMO
Over 100 million research participants around the world have had research array-based genotyping (GT) or genome sequencing (GS), but only a small fraction of these have been offered return of actionable genomic findings (gRoR). Between 2017 and 2021, we analyzed genomic results from 36,417 participants in the Mass General Brigham Biobank and offered to confirm and return pathogenic and likely pathogenic variants (PLPVs) in 59 genes. Variant verification prior to participant recontact revealed that GT falsely identified PLPVs in 44.9% of samples, and GT failed to identify 72.0% of PLPVs detected in a subset of samples that were also sequenced. GT and GS detected verified PLPVs in 1% and 2.5% of the cohort, respectively. Of 256 participants who were alerted that they carried actionable PLPVs, 37.5% actively or passively declined further disclosure. 76.3% of those carrying PLPVs were unaware that they were carrying the variant, and over half of those met published professional criteria for genetic testing but had never been tested. This gRoR protocol cost approximately $129,000 USD per year in laboratory testing and research staff support, representing $14 per participant whose DNA was analyzed or $3,224 per participant in whom a PLPV was confirmed and disclosed. These data provide logistical details around gRoR that could help other investigators planning to return genomic results.
Assuntos
Bancos de Espécimes Biológicos , Doença/genética , Variação Genética , Genoma Humano , Genômica , Adulto , Estudos de Coortes , DNA , Revelação , Dever de Recontatar , Feminino , Pesquisa em Genética , Testes Genéticos , Genômica/economia , Genômica/normas , Genômica/tendências , Humanos , Consentimento Livre e Esclarecido , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos TestesRESUMO
Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a callset of deletions from genomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used deletions from The 1000 Genomes Project Consortium (1000GP) in order to examine whether purifying selection preserves noncoding sites of chromatin accessibility marked by DNase I hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we developed a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of "cellular pleiotropy" for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By comparing real deletion PlyRS values to simulations in a length-matched framework and by using genomic covariates in analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop anchors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic activity are preserved by selection.
Assuntos
Cromatina , Genômica , Sítios de Ligação , Cromatina/genética , Humanos , Proteínas do Grupo Polycomb/metabolismoRESUMO
INTRODUCTION: Over 30 research groups and companies are exploring newborn screening using genomic sequencing (NBSeq), but the sensitivity of this approach is not well understood. METHODS: We identified individuals with treatable inherited metabolic disorders (IMDs) and ascertained the proportion whose DNA analysis revealed explanatory deleterious variants (EDVs). We examined variables associated with EDV detection and estimated the sensitivity of "DNA-first" NBSeq. We further predicted the annual rate of true positive and false negative NBSeq results in the United States for several conditions on the Recommended Uniform Screening Panel (RUSP). RESULTS: We identified 635 individuals with 80 unique IMDs. In univariate analyses, Black race (OR = 0.37, 95% CI: 0.16-0.89, p = 0.02) and public insurance (OR = 0.60, 95% CI: 0.39-0.91, p = 0.02) were less likely to be associated with finding EDVs. Had all individuals been screened with NBSeq, the sensitivity would have been 80.3%. We estimated that between 0 and 649.9 cases of RUSP IMDs would be missed annually by NBSeq in the United States. CONCLUSIONS: The overall sensitivity of NBSeq for treatable IMDs is estimated at 80.3%. That sensitivity will likely be lower for Black infants and those who are on public insurance.
RESUMO
PURPOSE: Elective genomic testing (EGT) is increasingly available clinically. Limited real-world evidence exists about attitudes and knowledge of EGT recipients. METHODS: After web-based education, patients who enrolled in an EGT program at a rural nonprofit health care system completed a survey that assessed attitudes, knowledge, and risk perceptions. RESULTS: From August 2020 to April 2022, 5920 patients completed the survey and received testing. Patients most frequently cited interest in learning their personal disease risks as their primary motivation. Patients most often expected results to guide medication management (74.0%), prevent future disease (70.4%), and provide information about risks to offspring (65.4%). Patients were "very concerned" most frequently about the privacy of genetic information (19.8%) and how well testing predicted disease risks (18.0%). On average, patients answered 6.7 of 11 knowledge items correctly (61.3%). They more often rated their risks for colon and breast cancers as lower rather than higher than the average person but more often rated their risk for a heart attack as higher rather than lower than the average person (all P < .001). CONCLUSION: Patients pursued EGT because of the utility expectations but often misunderstood the test's capabilities.
Assuntos
Testes Genéticos , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Inquéritos e Questionários , Idoso , Genômica/métodos , Predisposição Genética para DoençaRESUMO
ConspectusRare-earth-containing phosphors were crucial to the advances made to compact fluorescent lamps (CFLs), which assisted in protecting a widely used halophosphate phosphor from degrading after exposure to a high ultraviolet flux. The CFL phosphors are often coated twice by depositing a light coat of rare-earth-containing phosphors over the inexpensive halophosphate phosphor, which generates white light with high efficacy and a good color rendering index and possesses a balance between phosphor cost and performance. Costs of phosphors can be mitigated by requiring lower rare-earth ion concentrations or by completely eliminating rare-earth ions, which was one of the main goals of investigating the oxyfluorides Sr3AlO4F and Ba2SrGaO4F as potential phosphors. Changes in the Sr3AlO4F and Ba2SrGaO4F structures were studied using high-resolution neutron diffraction annealing these materials in 5%H2/95%Ar and 4%H2/96% Ar, respectively. Annealing in these atmospheres causes self-activated photoluminescence (PL) to occur under 254 nm light, which makes them ideal materials for rare-earth-free CFL phosphors. Additionally, these hosts possess two distinct sites for isovalent or aliovalent substitution of Sr denoted as the A(1) and A(2) sites. Ga3+ can be substituted for Al3+ at the M site, which is known to have an impact on the self-activated PL emission color. The structural distortions noted included closer packing in the FSr6 octahedrons and AlO4 tetrahedrons in the Sr3AlO4F structure as compared to in air-annealed samples, which show no PL emission. Temperature-dependent studies reveal that both the air- and reductively annealed samples have identical thermal expansion within this temperature range (3-350 K). High-resolution neutron diffraction at room temperature confirmed the tetragonal structure (I4/mcm) for Ba2SrGaO4F, a novel material in the Sr3AlO4F family of materials, has been synthesized via a solid-state method. Analysis of the refined Ba2SrGaO4F structure at room temperature revealed expansion in the lattice parameters and its polyhedral subunits between the reductively annealed and air-annealed samples, which are correlated with the PL emission. Previous studies related to the application of these host structure types revealed that they have potential as commercial solid-state lighting phosphors due to their ability to resist thermal quenching as well as accommodate various levels of substitutions that will assist with color tunability.
RESUMO
BACKGROUND: Population-based DNA screening for medically actionable conditions has the potential to improve public health by enabling early detection, treatment and/or prevention; however, public attitudes and willingness to participate in DNA screening have not been well investigated. METHODS: We presented a scenario to members of the Australian public, randomly selected from the electoral roll via the Australian Survey of Societal Attitudes, describing an adult population DNA screening programme currently under development, to detect risk of medically actionable cancers and heart disease. We asked questions regarding willingness to participate and pay, preferred delivery methods and concerns. RESULTS: We received 1060 completed questionnaires (response rate 23%, mean age 58 years). The vast majority (>92%) expressed willingness to undertake DNA screening. When asked about the optimal age of screening, most (56%) favoured early adulthood (aged 18-40 years) rather than at birth or childhood. Many respondents would prefer samples and data be kept for re-screening (36%) or research use (43%); some preferred samples to be destroyed (21%). Issues that decrease likelihood of participation included privacy (75%) and insurance (86%) implications. CONCLUSION: Our study demonstrates public willingness to participate in population DNA screening in Australia, and identifies barriers to participation, to be addressed in the design of screening programmes. Results are informing the development of a pilot national DNA screening programme.