RESUMO
Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Assuntos
Síndrome de COVID-19 Pós-Aguda , Serotonina , Humanos , COVID-19/complicações , Progressão da Doença , Inflamação , Síndrome de COVID-19 Pós-Aguda/sangue , Síndrome de COVID-19 Pós-Aguda/patologia , Serotonina/sangue , VirosesRESUMO
Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.
RESUMO
We examined antibody and memory B cell responses longitudinally for â¼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , RNA Mensageiro , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNARESUMO
Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.
Assuntos
Linfócitos T CD8-Positivos/citologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Doença Crônica , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Infecções/imunologia , Camundongos , Neoplasias/imunologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that â¼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.
Assuntos
Alphacoronavirus/imunologia , Anticorpos Antivirais , Betacoronavirus/imunologia , COVID-19/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Chlorocebus aethiops , Proteção Cruzada , Reações Cruzadas , Suscetibilidade a Doenças , Células HEK293 , Humanos , Lactente , Recém-Nascido , Células VeroRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
RESUMO
Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.
Assuntos
Subpopulações de Linfócitos T , Transcriptoma , Criança , Humanos , Idoso , Envelhecimento/genética , Epitopos/metabolismo , Análise de Célula ÚnicaRESUMO
B cell receptor (BCR) sequencing is a powerful tool for interrogating immune responses to infection and vaccination, but it provides limited information about the antigen specificity of the sequenced BCRs. Here, we present LIBRA-seq (linking B cell receptor to antigen specificity through sequencing), a technology for high-throughput mapping of paired heavy- and light-chain BCR sequences to their cognate antigen specificities. B cells are mixed with a panel of DNA-barcoded antigens so that both the antigen barcode(s) and BCR sequence are recovered via single-cell next-generation sequencing. Using LIBRA-seq, we mapped the antigen specificity of thousands of B cells from two HIV-infected subjects. The predicted specificities were confirmed for a number of HIV- and influenza-specific antibodies, including known and novel broadly neutralizing antibodies. LIBRA-seq will be an integral tool for antibody discovery and vaccine development efforts against a wide range of antigen targets.
Assuntos
Mapeamento de Epitopos/métodos , Epitopos/química , Receptores de Antígenos de Linfócitos B/química , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Antígenos/química , Antígenos/imunologia , Células Cultivadas , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Receptores de Antígenos de Linfócitos B/imunologia , Células THP-1RESUMO
Exhausted CD8 T cells (TEX) are a distinct state of T cell differentiation associated with failure to clear chronic viruses and cancer. Immunotherapies such as PD-1 blockade can reinvigorate TEX cells, but reinvigoration is not durable. A major unanswered question is whether TEX cells differentiate into functional durable memory T cells (TMEM) upon antigen clearance. Here, using a mouse model, we found that upon eliminating chronic antigenic stimulation, TEX cells partially (re)acquire phenotypic and transcriptional features of TMEM cells. These 'recovering' TEX cells originated from the T cell factor (TCF-1+) TEX progenitor subset. Nevertheless, the recall capacity of these recovering TEX cells remained compromised as compared to TMEM cells. Chromatin-accessibility profiling revealed a failure to recover core memory epigenetic circuits and maintenance of a largely exhausted open chromatin landscape. Thus, despite some phenotypic and transcriptional recovery upon antigen clearance, exhaustion leaves durable epigenetic scars constraining future immune responses. These results support epigenetic remodeling interventions for TEX cell-targeted immunotherapies.
Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Memória Imunológica/imunologia , Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Epigênese Genética/genética , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcrição Gênica/genética , Células VeroRESUMO
SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Células Th1/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Vacina BNT162 , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Memória Imunológica , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Adulto JovemRESUMO
Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. Severe acute respiratory syndrome coronavirus 2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic messenger RNA vaccine response in retrospective and prospective cohorts with lymphoma and chronic lymphocytic leukemia, paired with clinical and research immune parameters. Reduced serologic response was observed more frequently during active treatment, but nonresponse was also common within observation and posttreatment groups. Total immunoglobulin A and immunoglobulin M correlated with successful vaccine response. In individuals treated with anti-CD19-directed chimeric antigen receptor-modified T cells, nonresponse was associated with reduced B and T follicular helper cells. Predictors of vaccine response varied by disease and therapeutic group, and therefore further studies of immune health during and after cancer therapies are needed to individualize vaccine timing.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Estudos Retrospectivos , COVID-19/imunologia , COVID-19/prevenção & controle , Estudos Prospectivos , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinação , Imunoglobulina M/sangue , Linfoma/imunologia , Linfoma/terapia , Idoso de 80 Anos ou maisRESUMO
Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Projetos Piloto , Proteômica , Anticorpos Antivirais , Imunoglobulina G , Vacinação , Imunidade , Anti-InflamatóriosRESUMO
Learning cell identity from high-content single-cell data presently relies on human experts. We present marker enrichment modeling (MEM), an algorithm that objectively describes cells by quantifying contextual feature enrichment and reporting a human- and machine-readable text label. MEM outperforms traditional metrics in describing immune and cancer cell subsets from fluorescence and mass cytometry. MEM provides a quantitative language to communicate characteristics of new and established cytotypes observed in complex tissues.
Assuntos
Algoritmos , Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Glioblastoma/patologia , Biomarcadores/análise , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Humanos , Análise de Célula Única/métodos , Linfócitos T/citologiaRESUMO
BACKGROUND & AIMS: Many patients with inflammatory bowel disease (IBD) fail to respond to anti-tumor necrosis factor (TNF) agents such as infliximab and adalimumab, and etanercept is not effective for treatment of Crohn's disease. Activated matrix metalloproteinase 3 (MMP3) and MMP12, which are increased in inflamed mucosa of patients with IBD, have a wide range of substrates, including IgG1. TNF-neutralizing agents act in inflamed tissues; we investigated the effects of MMP3, MMP12, and mucosal proteins from IBD patients on these drugs. METHODS: Biopsy specimens from inflamed colon of 8 patients with Crohn's disease and 8 patients with ulcerative colitis, and from normal colon of 8 healthy individuals (controls), were analyzed histologically, or homogenized and proteins were extracted. We also analyzed sera from 29 patients with active Crohn's disease and 33 patients with active ulcerative colitis who were candidates to receive infliximab treatment. Infliximab, adalimumab, and etanercept were incubated with mucosal homogenates from patients with IBD or activated recombinant human MMP3 or MMP12 and analyzed on immunoblots or in luciferase reporter assays designed to measure TNF activity. IgG cleaved by MMP3 or MMP12 and antihinge autoantibodies against neo-epitopes on cleaved IgG were measured in sera from IBD patients who subsequently responded (clinical remission and complete mucosal healing) or did not respond to infliximab. RESULTS: MMP3 and MMP12 cleaved infliximab, adalimumab, and etanercept, releasing a 32-kilodalton Fc monomer. After MMP degradation, infliximab and adalimumab functioned as F(ab')2 fragments, whereas cleaved etanercept lost its ability to neutralize TNF. Proteins from the mucosa of patients with IBD reduced the integrity and function of infliximab, adalimumab, and etanercept. TNF-neutralizing function was restored after incubation of the drugs with MMP inhibitors. Serum levels of endogenous IgG cleaved by MMP3 and MMP12, and antihinge autoantibodies against neo-epitopes of cleaved IgG, were higher in patients who did not respond to treatment vs responders. CONCLUSIONS: Proteolytic degradation may contribute to the nonresponsiveness of patients with IBD to anti-TNF agents.
Assuntos
Fatores Biológicos/metabolismo , Imunoglobulina G/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Proteólise/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/metabolismo , Anticorpos Monoclonais Humanizados/metabolismo , Fatores Biológicos/farmacologia , Biópsia , Estudos de Casos e Controles , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colo/imunologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Epitopos/metabolismo , Etanercepte/metabolismo , Feminino , Humanos , Immunoblotting/métodos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Infliximab/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-IdadeRESUMO
Mass and fluorescence cytometry are quantitative single cell flow cytometry approaches that are powerful tools for characterizing diverse tissues and cellular systems. Here mass cytometry was directly compared with fluorescence cytometry by studying phenotypes of healthy human peripheral blood mononuclear cells (PBMC) in the context of superantigen stimulation. One mass cytometry panel and five fluorescence cytometry panels were used to measure 20 well-established lymphocyte markers of memory and activation. Comparable frequencies of both common and rare cell subpopulations were observed with fluorescence and mass cytometry using biaxial gating. The unsupervised high-dimensional analysis tool viSNE was then used to analyze data sets generated from both mass and fluorescence cytometry. viSNE analysis effectively characterized PBMC using eight features per cell and identified similar frequencies of activated CD4+ T cells with both technologies. These results suggest combinations of unsupervised analysis programs and extended multiparameter cytometry will be indispensable tools for detecting perturbations in protein expression in both health and disease.
Assuntos
Citometria de Fluxo/normas , Imunofenotipagem/métodos , Leucócitos Mononucleares/citologia , Espectrometria de Massas/normas , Antígenos CD/genética , Antígenos CD/imunologia , Expressão Gênica , Humanos , Elementos da Série dos Lantanídeos/análise , Leucócitos Mononucleares/classificação , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Análise MultivariadaRESUMO
Molecularly engineered antibodies with fit-for-purpose properties will differentiate next generation antibody therapeutics from traditional IgG1 scaffolds. One requirement for engineering the most appropriate properties for a particular therapeutic area is an understanding of the intricacies of the target microenvironment in which the antibody is expected to function. Our group and others have demonstrated that proteases secreted by invasive tumors and pathological microorganisms are capable of cleaving human IgG1, the most commonly adopted isotype among monoclonal antibody therapeutics. Specific cleavage in the lower hinge of IgG1 results in a loss of Fc-mediated cell-killing functions without a concomitant loss of antigen binding capability or circulating antibody half-life. Proteolytic cleavage in the hinge region by tumor-associated or microbial proteases is postulated as a means of evading host immune responses, and antibodies engineered with potent cell-killing functions that are also resistant to hinge proteolysis are of interest. Mutation of the lower hinge region of an IgG1 resulted in protease resistance but also resulted in a profound loss of Fc-mediated cell-killing functions. In the present study, we demonstrate that specific mutations of the CH2 domain in conjunction with lower hinge mutations can restore and sometimes enhance cell-killing functions while still retaining protease resistance. By identifying mutations that can restore either complement- or Fcγ receptor-mediated functions on a protease-resistant scaffold, we were able to generate a novel protease-resistant platform with selective cell-killing functionality.
Assuntos
Anticorpos Monoclonais , Citotoxicidade Celular Dependente de Anticorpos , Sítios de Ligação de Anticorpos , Engenharia de Proteínas , Proteólise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/genética , Sítios de Ligação de Anticorpos/imunologia , Linhagem Celular , Humanos , Imunoglobulina G , Receptores de IgG/genética , Receptores de IgG/imunologiaRESUMO
Tumor-associated macrophages (TAMs) have been shown to promote tumor progression, and increased TAM infiltration often correlates with poor prognosis. However, questions remain regarding the phenotype of macrophages within the tumor and their role in mAb-dependent cytotoxicity. This study demonstrates that whereas TAMs have protumor properties, they maintain Fc-dependent anti-tumor function. CD11b(+)CD14(+) TAMs isolated from primary human breast tumors expressed activating FcγRs. To model breast cancer TAMs in vitro, conditioned medium from breast cancer cells was used to drive human peripheral monocyte differentiation into macrophages. Tumor-conditioned macrophages were compared with in vitro derived M1 and M2a macrophages and were found to promote tumor cell invasion and express M2a markers, confirming their protumor potential. However, unlike M2a macrophages, tumor-conditioned macrophages expressed FcγRs and phagocytosed tumor cells in the presence of a tumor Ag-targeting mAb, unmasking an underappreciated tumoricidal capacity of TAMs. In vivo macrophage depletion reduced the efficacy of anti-CD142 against MDA-MB-231 xenograft growth and metastasis in SCID/beige mice, implicating a critical role for macrophages in Fc-dependent cell killing. M-CSF was identified in tumor-conditioned media and shown to be capable of differentiating macrophages with both pro- and anti-tumor properties. These results highlight the plasticity of TAMs, which are capable of promoting tumor progression and invasion while still retaining tumoricidal function in the presence of tumor-targeting mAbs.
Assuntos
Anticorpos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Macrófagos/imunologia , Fagocitose , Receptores de IgG/imunologia , Animais , Neoplasias da Mama/patologia , Antígeno CD11b/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Progressão da Doença , Feminino , Humanos , Imunofenotipagem , Receptores de Lipopolissacarídeos/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos SCID , Invasividade Neoplásica/imunologia , Transplante de Neoplasias , Cultura Primária de CélulasRESUMO
Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.