RESUMO
The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.
Assuntos
Fenômenos Fisiológicos Celulares , Pinças Ópticas , Animais , Fenômenos Fisiológicos Celulares/efeitos da radiação , Humanos , LasersRESUMO
The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.
Assuntos
Adenocarcinoma/enzimologia , Butiratos/farmacologia , Catalase/genética , Colo/enzimologia , Neoplasias do Colo/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Superóxido Dismutase/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/metabolismo , Catalase/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Superóxido Dismutase/metabolismoRESUMO
TopBP1 is a BRCT domain-rich protein that is structurally and functionally conserved throughout eukaryotic organisms. It is required for the initiation of DNA replication and for DNA repair and damage signalling. To further dissect its biological functions, we explored TopBP1-interacting proteins by co-immunoprecipitation assays and LC-ESI-MS-analyses. As TopBP1 binding partners we identified p54(nrb) and PSF, and confirmed the physical interactions by GST pull-down assays, co-immunoprecipitations and by yeast two-hybrid experiments. Recent evidence shows an involvement of p54(nrb) and PSF in DNA double-strand break repair (DSB) and radioresistance. To get a first picture of the physiological significance of the interaction of TopBP1 with p54(nrb) and PSF we investigated in real time the spatiotemporal behaviour of the three proteins after laser microirradiation of living cells. Localisation of TopBP1 at damage sites was noticed as early as 5 s following damage induction, whereas p54(nrb) and PSF localised there after 20 s. Both p54(nrb) and PSF disappeared after 20 s while TopBP1 was retained at damage sites significantly longer suggesting different functions of the proteins during DSB recognition and repair.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Primers do DNA/genética , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fatores de Transcrição de Octâmero/química , Fatores de Transcrição de Octâmero/genética , Fator de Processamento Associado a PTB , Domínios e Motivos de Interação entre Proteínas , Proteômica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
Bacterial endosymbionts play essential roles for many organisms, and thus specialized mechanisms have evolved during evolution that guarantee the persistence of the symbiosis during or after host reproduction. The rice seedling blight fungus Rhizopus microsporus represents a unique example of a mutualistic life form in which a fungus harbors endobacteria (Burkholderia sp.) for the production of a phytotoxin. Here we report the unexpected observation that in the absence of endosymbionts, the host is not capable of vegetative reproduction. Formation of sporangia and spores is restored only upon reintroduction of endobacteria. To monitor this process, we succeeded in GFP labeling cultured endosymbionts. We also established a laserbeam transformation technique for the first controlled introduction of bacteria into fungi to observe their migration to the tips of the aseptate hyphae. The persistence of this fungal-bacterial mutualism through symbiont-dependent sporulation is intriguing from an evolutionary point of view and implies that the symbiont produces factors that are essential for the fungal life cycle. Reproduction of the host has become totally dependent on endofungal bacteria, which in return provide a highly potent toxin for defending the habitat and accessing nutrients from decaying plants. This scenario clearly highlights the significance for a controlled maintenance of this fungal-bacterial symbiotic relationship.
Assuntos
Evolução Biológica , Burkholderia/fisiologia , Rhizopus/fisiologia , Simbiose , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Micotoxinas/biossíntese , Reprodução/fisiologia , Esporos Fúngicos/crescimento & desenvolvimentoRESUMO
BACKGROUND: It is known that alpha-defensin expression is enhanced in colon cancer. However, the expression of human alpha defensin 6 (DEFA 6) in earlier stages, such as adenoma, has so far not yet been studied in a patient resolved manner. METHODS: By using quantitative Real Time-PCR, the gene expression pattern of DEFA 1-3 and DEFA 6 was analyzed in tissue of different stages of carcinogenesis, derived from colorectal cancer patients. In addition to paired normal and tumor tissue, matched normal near tumor and adenoma tissue samples were examined. RESULTS: The median gene expression of human defensin alpha 6 (DEFA 6) has been found to be moderately increased (~ 5 fold) in tumor samples derived from individuals with colorectal cancer (CRC) when compared to their normal counterparts. However, when the data were analyzed in a patient-wise manner, a large expression variation among individual patients is found, making the use of DEFA 6 for individual diagnosis of fully blown colon carcinoma difficult. Surprisingly, in adenoma the gene expression analysis revealed a 100 fold increased median expression of DEFA 6 relative to normal colon tissue. 13/18 samples had an individual overexpression of more than 60 fold in adenoma but only 3/17 in carcinoma. In each of the individual patients, at least either the adenoma or the carcinoma showed strong DEFA 6 overexpression. CONCLUSIONS: We suggest that the expression of DEFA 6 preferably can be used as a potential diagnostic marker for adenoma and not as a marker for fully blown carcinoma. This is supported by the fact that DEFA 6 is a downstream target of the Wnt pathway, which is mutational active during the earliest stage of cancer development.
Assuntos
Adenoma/diagnóstico , Adenoma/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , alfa-Defensinas/biossíntese , Idoso , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Wnt/metabolismoRESUMO
Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.
Assuntos
Luz , Fótons , Modelos TeóricosRESUMO
We show how a technique developed within the framework of physics and physical chemistry-in a true interdisciplinary approach-can answer questions in life sciences that are not solvable by using other techniques. Herein, we focus on blood-pressure regulation and DNA repair in ageing studies. Laser microbeams and optical tweezers are now established tools in many fields of science, particularly in the life sciences. A short glimpse is given on the wide field of non-age-research applications in life sciences. Then, optical tweezers are used to show that exerting a vertical pressure on cells representing the inner lining of blood vessels results in bursts of NO liberation concomitant with large changes in cell morphology. Repeated treatment of such human umbilical vein endothelial cells (HUVEC) results in stiffening, a hallmark of manifest high blood pressure, a disease primarily of the elderly. As a second application in ageing research, a laser microbeam is used to induce, with high spatial and temporal resolution, DNA damages in the nuclei of U2OS human osteosarcoma cells. A pairwise study of the recruitment kinetics of different DNA repair proteins reveals that DNA repair starts with non-homologous end joining (NHEJ), a repair pathway, and may only after several minutes switch to the error-free homologous recombination repair (HRR) pathway. Since DNA damages-when incorrectly repaired-accumulate with time, laser microbeams are becoming well-used tools in ageing research.
Assuntos
Envelhecimento , Núcleo Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA , Células Endoteliais/efeitos da radiação , Células HeLa , Humanos , Lasers , Pinças ÓpticasRESUMO
In DNA repair research, DNA damage is induced by different agents, depending on the technical facilities of the investigating researchers. A quantitative comparison of different investigations is therefore often difficult. By using a modified variant of the neutral comet assay, where the histone H1 is detected by immunofluorescence [immunofluorescent comet assay (IFCA)], we achieve previously unprecedented resolution in the detection of fragmented chromatin and show that trillions of ultraviolet A photons (of a few eV), billions of bleomycin (BLM) molecules and thousands of gamma quanta (of 662 keV) generate, in first order, similar damage in the chromatin of HeLa cells. A somewhat more detailed inspection shows that the damage caused by 20 Gy ionizing radiation and by a single laser pulse of 10 microJ are comparable, while the damage caused by 12 microg/ml BLM depends highly on the individual cell. Taken together, this work provides a detailed view of DNA fragmentation induced by different treatments and allows comparing them to some extent, especially with respect to the neutral comet assay.
Assuntos
Bleomicina/farmacologia , Ensaio Cometa , Dano ao DNA , Desoxirribonucleases/metabolismo , Lasers , Radiação Ionizante , Raios Ultravioleta , Benzotiazóis , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Diaminas , Imunofluorescência , Células HeLa , Humanos , Compostos Orgânicos , Quinolinas , Coloração e RotulagemRESUMO
There has been considerable current interest in the rotational behavior of red blood cells (RBCs) in optical tweezers. However, the mechanism of rotation in polarized tweezers is still not well understood and conflicts exist in the understanding of this phenomenon. Therefore, we reexamined the underlying phenomenon by use of confocal fluorescence microscopy in combination with optical tweezers. Under different osmolarities of the buffer, the three-dimensionally reconstructed images showed that the trapped RBC maintains its shape and is oriented in the vertical direction. Using dual optical tweezers, the RBC could also be oriented three-dimensionally in a controlled manner. The mechanism of orientation and alignment of RBCs with the polarization of the tweezers' beam was attributed to its form-birefringence rather than optical birefringence.
Assuntos
Eritrócitos/citologia , Pinças Ópticas , Birrefringência , Forma Celular , Humanos , Imageamento Tridimensional , Microscopia Confocal , Microscopia de Fluorescência , RotaçãoRESUMO
Different classes of chemicals can induce a phototoxic effect by absorbing light energy within the wavelength range of sunlight. The assessment of photo-safety is therefore an obligatory part of the development of new drugs. Ten UV-vis (280-800nm)-absorbing compounds (ketoprofen, promazine, chlorpromazine, dacarbazine, acridine, lomefloxacin, 8-methoxypsoralen, chlorhexidine, titanium dioxide, octylmethoxycinnamate) were tested for their photogenotoxic potential in the alkaline comet assay in the presence and absence of UV-vis. In order to establish an easy and timesaving protocol for a photo comet assay screening test, the application of 96-well plates was essential. The use of mouse lymphoma L5178Y cells, a cell line growing in suspension, allowed the determination of photocytotoxicity with the Alamar Blue assay and of photogenotoxicity with the alkaline comet assay in parallel. L5178Y cells were incubated with the test compounds for 20min and irradiated with simulated sunlight in the wavelength range from 280 to 800nm. The applied UV dose was 600mJ/cm(2) UV-A and 30mJ/cm(2) UV-B. After a post-incubation of 10min, the Alamar Blue assay and the alkaline comet assay were performed. All of the compounds which are known to be photogenotoxic (8-methoxypsoralen, acridine, chlorpromazine, dacarbazine, ketoprofen, lomefloxacin) showed a positive effect under our assay conditions. Furthermore, four UV-vis absorbing chemicals which are known to be not photogenotoxic (promazine, chlorhexidine, titanium dioxide, octylmethoxycinnamate) were analysed. For none of them an increase of the DNA damage following irradiation was observed in this study. In conclusion, all of the chemical compounds tested were classified in agreement with published data. From the data presented it is concluded that the photo comet assay with L5178Y mouse lymphoma cells is a reliable model to assess photochemical genotoxicity in vitro.
Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Luz/efeitos adversos , Absorção , Animais , Camundongos , Fatores de Tempo , Células Tumorais CultivadasRESUMO
Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few micrometre in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells.
RESUMO
Light microscopy has proven to be one of the most versatile analytical tools in cell biology and cytogenetics. The growing spectrum of scientific knowledge demands a continuous improvement of the optical resolution of the instruments. In far-field light microscopy, the attainable resolution is dictated by the limit of diffraction, which, in practice, is about 250 nm for high-numerical-aperture objective lenses. Near-field scanning optical microscopy (NSOM) was the first technique that has overcome this limit up to about one order of magnitude. Typically, the resolution range below 100 nm is accessed for biological applications. Using appropriately designed scanning probes allows for obtaining an extremely small near-field light excitation volume (some tens of nanometers in diameter). Because of the reduction of background illumination, high contrast imaging becomes feasible for light transmission and fluorescence microscopy. The height of the scanning probe is controlled by atomic force interactions between the specimen surface and the probe tip. The control signal can be used for the production of a topographic (nonoptical) image that can be acquired simultaneously. In this chapter, the principle of NSOM is described with respect to biological applications. A brief overview of some requirements in biology and applications described in the literature are given. Practical advice is focused on instruments with aperture-type illumination probes. Preparation protocols focussing on NSOM of cell surfaces and chromosomes are presented.
Assuntos
Citogenética , Técnicas Citológicas , Microscopia , Animais , Células Cultivadas , Cromossomos/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Microscopia/instrumentação , Microscopia/métodos , Propriedades de SuperfícieRESUMO
The comet-FISH technique described in this protocol is a tool to detect genome region-specific DNA damage and repair. It is a combination of two established techniques, the comet assay (or single-cell gel electrophoresis, or the single-cell gel test), to separate highly fragmented from moderately or nonfragmented DNA and to measure it, and fluorescence in situ hybridization (FISH), to specifically label DNA sequences of interest. Comet-FISH exists in two versions, based on the neutral and the alkaline comet assays. A detailed description of the comet assay is given in Chapter 9, so readers who are not familiar with this technique can work directly with the protocol described here, without referring to additional protocols reported elsewhere. The neutral version of the comet assay detects double-strand breaks, while the alkaline version detects both double- and single-strand breaks as well as abasic sites or sites of incomplete repair. This chapter also details cell preparation and production of the hybridization probes adapted to the comet-FISH technique. Finally, microscopic analysis of comet-FISH results is described, and possible procedures of quantification of the specific DNA damage are presented.
Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Reparo do DNA , Hibridização in Situ Fluorescente/métodos , Animais , HumanosRESUMO
Centromeres and telomeres are key structures of mitotic and meiotic chromosomes. Especially telomeres develop particular structural properties at meiosis. Here, we investigated the feasibility of scanning near-field optical microscopy (SNOM) for light-microscopic imaging of meiotic telomeres in the sub-hundred nanometer resolution regime. SNOM was applied to visualise the synaptonemal complex (SC) and telomere proteins (TRF1, TRF2) after differential immuno-fluorescent labelling. We tested and compared two different preparation protocols for their applicability in a SNOM setting using micro-fabricated silicon nitride aperture tips. Protocol I consisted of differential labelling of meiotic chromosome cores (SC) by SCP3 immuno-fluorescence and telomeres by TRF1 or TRF2 immuno-fluorescence, while protocol II combined absorption labelling with alkaline phosphatase substrates of cores with fluorescent labelling of telomeres. The results obtained indicate that protocol I reveals a better visualisation of structural (topographic) details than protocol II. By means of SNOM, meiotic chromosome cores could be visualised at a resolution overtopping that of far-field light microscopy.
Assuntos
Cromossomos Humanos/ultraestrutura , Meiose , Microscopia de Força Atômica/métodos , Complexo Sinaptonêmico/ultraestrutura , Telômero/ultraestrutura , Imunofluorescência , Humanos , Masculino , Espermatócitos/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismoRESUMO
Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.
Assuntos
Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases/metabolismo , Células 3T3 , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 1 do Ponto de Checagem , Chlorocebus aethiops , Cromatina/química , Dano ao DNA , Replicação do DNA , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , Proteínas Recombinantes/metabolismo , Fase S , Homologia de Sequência de AminoácidosRESUMO
Due to protection of oncogenic proteins from degradation and enhancement of glycolytic phosphometabolites for synthetic processes, respectively, heat shock protein 90 (HSP90) and pyruvate kinase type M2 (PKM2) are important proteins for tumor growth. The present study was undertaken to investigate the susceptibility of both proteins and their encoding genes to the chemopreventive agent butyrate in human colon cells. Matched tissue of different transformation stages derived from 20 individual colon cancer patients was used for the experiments. The results of quantitative real-time PCR revealed a moderate increase of HSP90ß and PKM2 mRNA in colon tumors (P < 0.01) compared to normal tissues without relation to clinical parameters. The expression pattern could be confirmed for PKM2 protein by Western blot but not for HSP90ß. During culturing with butyrate, the amount of PKM2 transcripts decreased in all three tissue types with the strongest effects observed in tumors (median fold decrease 45%, P < 0.05). The protein data have not reflected this influence supposing a more gradual degradation rate due to a longer half-life of PKM2. In contrast, the mRNA expression of HSP90ß in normal tissue was found 1.38-fold increased by butyrate (P < 0.05), but not the corresponding protein level. HSP90ß expression in adenomas and tumors remained generally insensitive. Only in malignant tissue, however, a significant correlation was found between the individual effects observed on gene and protein expression level. In conclusion, the present study identified PKM2 as a potential direct target of butyrate in neoplastic colon tissue, whereas HSP90ß is none of it.
RESUMO
This contribution reviews recent applications of micromanipulation, by UV photons, in DNA repair and ageing research as well as in the evaluation of the phototoxicity of drugs. In some cases, micromanipulation is combined with the comet assay, a technique, which allows a direct view on DNA damages. It is shown that, in humans, the sensitivity of DNA to UV induced damage and its subsequent repair is surprisingly stable up to high age and that drugs which are usually non-toxic induce DNA damage when irradiated in parallel by UV irradiation. Using the immune fluorescent comet assay, IFCA, a variant of the comet assay, direct comparison of the effects of ionizing (137) Cs radiation with those of localized UV radiation is possible. When a laser microbeam is used to damage DNA in a cell nucleus with high temporal and spatial resolution, it can be observed directly how repair molecules accumulate (are recruited) at the site of damage. Comparison of the recruitment speed allows establishing an order of DNA repair events.
Assuntos
Envelhecimento/efeitos da radiação , Ensaio Cometa/métodos , Reparo do DNA/efeitos da radiação , Lasers , Preparações Farmacêuticas/análise , Fótons , Raios Ultravioleta , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Radioisótopos de Césio , Humanos , Microscopia de Fluorescência , Preparações Farmacêuticas/efeitos da radiaçãoRESUMO
The induction and subsequent repair of photochemically induced DNA damage by sparfloxacin was assessed in different tissues of juvenile Wistar rats. The animals were treated once orally with 500 mg kg(-1) of sparfloxacin and irradiated 3 hours later with 7 J cm(-2) UVA. Induction and repair of DNA damage was studied in the skin, retina and cornea using the alkaline comet assay. After a tissue-specific increase in the initial DNA damage (higher in the cornea than in skin and retina), an exponential decrease was found in the skin and retina, whereas in cornea a further increase of the DNA damage after 1 hour followed by an exponential decrease was observed. The half-lives for DNA repair were approximately 3 hours for skin and retina and 1 hour for cornea. After a recovery time of 6 hours, the majority of the induced DNA damage detectable with the comet assay had been removed. In conclusion, the data indicate that (1) photochemically induced DNA damage by sparfloxacin is efficiently removed in skin, retina and cornea, (2) repair of these DNA lesions follows an exponential decrease, (3) the induction and repair of sparfloxacin-mediated photochemical DNA damage might be tissue specific.