Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Environ Manage ; 338: 117852, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023607

RESUMO

Amelioration and management of large volumes of tailings resulting from alumina refining is a major challenge owing to the high alkalinity and salinity of residues. Blended byproduct caps are a potential new and more cost-effective approach to tailings management, where tailings are blended with other local byproducts in order to reduce pH, salinity and toxic elements. Here, alkaline bauxite residue was blended with four byproducts (waste acid, sewage water, fly ash and eucalypt mulch) to create a range of potential capping materials. We leached and weathered materials in the glasshouse with deionized water over nine weeks to investigate if byproducts on their own or in combination improved cap conditions. Combining all four byproducts (10 wt % waste acid, 5 wt % sewage water, 20 wt % fly ash and 10 wt % eucalypt mulch) achieved lower pH (9.60) compared to any byproduct applied individually, or un-remediated bauxite residue (pH 10.7). Leaching decreased EC by dissolving and exporting salts and minerals from the bauxite residue. Fly ash addition increased organic carbon (likely from non-combusted organic material) and nitrogen, while eucalypt mulch increased inorganic phosphorus. Addition of byproducts also decreased the concentration of potentially toxic elements (e.g., Al, Na, Mo and V) and enhanced pH neutralisation. Initial pH with single byproduct treatments was 10.4-10.5, which decreased to between 9.9-10.0. Further lowering of pH and salinity as well as increased nutrient concentrations may be possible through higher addition rates of byproducts, incorporation of other materials such as gypsum, and increasing leaching/weathering time of tailings in situ.


Assuntos
Óxido de Alumínio , Esgotos , Óxido de Alumínio/química , Cinza de Carvão , Concentração de Íons de Hidrogênio , Água
2.
J Exp Biol ; 220(Pt 12): 2265-2276, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396354

RESUMO

Fishes use their mechanoreceptive lateral line system to sense nearby objects by detecting slight fluctuations in hydrodynamic motion within their immediate environment. Species of fish from different habitats often display specialisations of the lateral line system, in particular the distribution and abundance of neuromasts, but the lateral line can also exhibit considerable diversity within a species. Here, we provide the first investigation of the lateral line system of the Australian western rainbowfish (Melanotaenia australis), a species that occupies a diversity of freshwater habitats across semi-arid northwest Australia. We collected 155 individuals from eight populations and surveyed each habitat for environmental factors that may contribute to lateral line specialisation, including water flow, predation risk, habitat structure and prey availability. Scanning electron microscopy and fluorescent dye labelling were used to describe the lateral line system in M. australis, and to examine whether the abundance and arrangement of superficial neuromasts (SNs) varied within and among populations. We found that the SNs of M. australis were present in distinct body regions rather than lines. The abundance of SNs within each body region was highly variable, and also differed among populations and individuals. Variation in SN abundance among populations was best explained by habitat structure and the availability of invertebrate prey. Our finding that specific environmental factors explain among-population variation in a key sensory system suggests that the ability to acquire sensory information is specialised for the particular behavioural needs of the animal.


Assuntos
Peixes/anatomia & histologia , Sistema da Linha Lateral/anatomia & histologia , Animais , Austrália , Feminino , Sistema da Linha Lateral/ultraestrutura , Masculino , Microscopia Acústica , Microscopia de Fluorescência , Movimentos da Água , Austrália Ocidental
3.
Glob Chang Biol ; 22(8): 2776-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26970074

RESUMO

The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.


Assuntos
Mudança Climática , Ecossistema , El Niño Oscilação Sul , Animais , Antozoários , Austrália , Clima
4.
Sci Total Environ ; 934: 173198, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750740

RESUMO

Land use and climate changes are driving significant shifts in the magnitude and persistence of dryland stream surface flows. The impact of these shifts on ecological functioning is largely unknown, particularly where streams have become wetter rather than drier. This study investigated relationships between hydrologic regime (including surface water persistence, differences in groundwater depth and altered flooding dynamics) with plant traits and riverine vegetation functional composition. Our study system was a previously ephemeral creek in semi-arid northwest Australia that has received groundwater discharge from nearby mining operations for >15 years; surface flows are now persistent for ∼27 km downstream of the discharge point. We aimed to (i) identify plant functional groups (FGs) associated with the creek and adjacent floodplain; and (ii) assess their distribution across hydrological gradients to predict shifts in ecological functioning in response to changing flow regimes. Seven FGs were identified using hierarchical clustering of 40 woody perennial plant species based on morphometric, phenological and physiologic traits. We then investigated how FG abundance (projective foliar cover), functional composition, and functional and taxonomic richness varied along a 14 km gradient from persistent to ephemeral flows, varying groundwater depths, and distances from the stream channel. Dominant FGs were (i) drought avoidant mesic trees that are fluvial stress tolerant, or (ii) drought tolerant xeric tall shrubs that are fluvial stress intolerant. The drought avoidant mesic tree FG was associated with shallow groundwater but exhibited lower cover in riparian areas closer to the discharge (persistent surface flows). However, there were more FGs and higher species richness closer to the discharge point, particularly on the floodplain. Our findings demonstrate that quantifying FG distribution and diversity is a significant step in both assessing the impacts of mine water discharge on riverine ecosystems and for planning for post-mining restoration.


Assuntos
Rios , Biodiversidade , Monitoramento Ambiental/métodos , Plantas , Movimentos da Água , Mudança Climática , Ecossistema , Territórios do Noroeste , Hidrologia , Água Subterrânea
5.
New Phytol ; 192(3): 664-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21848988

RESUMO

• Drying a portion of a root system (partial root-zone drying (PRD)) can induce partial stomatal closure, but this response is not always observed. We hypothesized that some of the variation in PRD response reflects adaptations to the native environment, where plants subjected to frequent PRD events may display a greater degree of root-level compensation. • Here, we examined PRD responses of Melaleuca argentea, a tree native to intermittent waterways in which PRD events are common. Seedlings were grown with part of their root system in soil and part in an aquatic compartment, mimicking conditions often observed in the field. • The aquatic roots initially provided two-thirds of total water uptake, but draining the aquatic compartment had no effect on stomatal conductance, so long as soil moisture remained c. 80% of field capacity. Water uptake from the soil compartment increased threefold within 24 h, with a corresponding transient threefold increase in root hydraulic conductance (L(p)), an increase in plasma membrane intrinsic protein 1 (PIP1) aquaporins at 24 h, and a decrease in PIP2 aquaporins by 48 h. • Our results demonstrate that PRD can induce rapid changes in L(p) and aquaporin expression in roots, which may play a role in short-term water uptake adjustments, particularly in species adapted to heterogeneous water availability.


Assuntos
Aquaporinas/metabolismo , Dessecação , Melaleuca/fisiologia , Raízes de Plantas/fisiologia , Água/fisiologia , Membrana Celular/metabolismo , Concentração Osmolar , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Xilema/fisiologia
6.
Plant Cell Environ ; 34(12): 2149-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21848859

RESUMO

Reduced leaf size is often correlated to increased aridity, where smaller leaves demand less water via xylem conduits. However, it is unknown if differences in three-dimensional (3D) xylem connectivity reflect leaf-level adaptations. We used X-ray microtomography (micro-CT) to quantify 3D xylem connectivity in ∼5 mm diameter branch sections of co-occurring semi-arid Acacia species of varied phyllode size. We compared 3D connectivity to minimum branch water potential and two-dimensional (2D) vessel attributes derived from sections produced by micro-CT. 2D attributes included vessel area, density, vessel size to number ratio (S) and vessel lumen fraction (F). Trees with terete phyllodes had less negative water potentials than broad phyllode variants. 3D xylem connectivity was conserved across all trees regardless of phyllode type or minimum water potential. We also found that xylem connectivity was sensitive to vessel lumen fraction (F) and not the size to number ratio (S) even though F was consistent among species and phyllode variants. Our results demonstrate that differences in phyllode anatomy, and not xylem connectivity, likely explain diversity of drought tolerance among closely related Acacia species. Further analysis using our approach across a broader range of species will improve understanding of adaptations in the xylem networks of arid zone species.


Assuntos
Acacia/fisiologia , Folhas de Planta/anatomia & histologia , Água/fisiologia , Xilema/anatomia & histologia , Acacia/anatomia & histologia , Folhas de Planta/fisiologia , Especificidade da Espécie , Microtomografia por Raio-X , Xilema/fisiologia
7.
PLoS One ; 16(5): e0249959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945548

RESUMO

Globally, many biomes are being impacted by significant shifts in total annual rainfall as well as increasing variability of rainfall within and among years. Such changes can have potentially large impacts on plant productivity and growth, but remain largely unknown, particularly for much of the Southern Hemisphere. We investigate how growth of the widespread conifer, Callitris columellaris varied with inter-annual variation in the amount, intensity and frequency of rainfall events over the last century and between semi-arid (<500 mm mean annual rainfall) and tropical (>800 mm mean annual rainfall) biomes in Australia. We used linear and polynomial regression models to investigate the strength and shape of the relationships between growth (ring width) and rainfall. At semi-arid sites, growth was strongly and linearly related to rainfall amount, regardless of differences in the seasonality and intensity of rainfall. The linear shape of the relationship indicates that predicted future declines in mean rainfall will have proportional negative impacts on long-term tree growth in semi-arid biomes. In contrast, growth in the tropics showed a weak and asymmetrical ('concave-down') response to rainfall amount, where growth was less responsive to changes in rainfall amount at the higher end of the rainfall range (>1250 mm annual rainfall) than at the lower end (<1000 mm annual rainfall). The asymmetric relationship indicates that long-term growth rates of Callitris in the tropics are more sensitive to increased inter-annual variability of rainfall than to changes in the mean amount of rainfall. Our findings are consistent with observations that the responses of vegetation to changes in the mean or variability of rainfall differ between mesic and semi-arid biomes. These results highlight how contrasting growth responses of a widespread species across a hydroclimatic gradient can inform understanding of potential sensitivity of different biomes to climatic variability and change.


Assuntos
Ecossistema , Chuva , Árvores/crescimento & desenvolvimento , Austrália , Estações do Ano , Análise Espaço-Temporal
8.
New Phytol ; 186(4): 947-956, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20353419

RESUMO

*Rhizanthella gardneri is a rare and fully subterranean orchid that is presumably obligately mycoheterotrophic. R. gardneri is thought to be linked via a common mycorrhizal fungus to co-occurring autotrophic shrubs, but there is no experimental evidence to support this supposition. *We used compartmentalized microcosms to investigate the R. gardneri tripartite relationship. (13)CO(2) was applied to foliage of Melaleuca scalena plants and [(13)C-(15)N]glycine was fed to the common mycorrhizal fungus, and both sources traced to R. gardneri plants. *In our microcosm trial, up to 5% of carbon (C) fed as (13)CO(2) to the autotrophic shrub was transferred to R. gardneri. R. gardneri also readily acquired soil C and nitrogen (N), where up to 6.2% of C and 22.5% of N fed as labelled glycine to soil was transferred via the fungus to R. gardneri after 240 h. *Our study confirms that R. gardneri is mycoheterotrophic and acquires nutrients via mycorrhizal fungus connections from an ectomycorrhizal autotrophic shrub and directly from the soil via the same fungus. This connection with a specific fungus is key to explaining why R. gardneri occurs exclusively under certain Melaleuca species at a very limited number of sites in Western Australia.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Orchidaceae/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Germinação , Glicina/metabolismo , Marcação por Isótopo , Melaleuca/metabolismo , Melaleuca/microbiologia , Micorrizas/fisiologia , Isótopos de Nitrogênio , Orchidaceae/microbiologia
9.
Sci Total Environ ; 720: 137373, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32135293

RESUMO

Managers tasked with repairing degraded stream ecosystems require restoration strategies that are tailored to local and regional characteristics. Emerging evidence suggests that local reach-scale approaches may be as effective, if not more so, than catchment-scale actions in highly permeable coastal landscapes, particularly if there is hydraulic connectivity to shallow groundwater and where recharge is strongly seasonal. This study assessed the relative influence of catchment-scale land use and reach-scale vegetation structure on the distribution of carbon and nutrient concentrations of streams within urban and agricultural catchments of the Perth region of south-western Australia. We used linear mixed-effects models to evaluate the extent to which phosphorus, nitrogen and carbon concentrations in different stream zones (streamwater, and fluvial and parafluvial sediments) were explained by catchment and reach-scale attributes and moderated by high versus low-flow periods, i.e., in wet versus dry months. We found that reach-scale vegetation (woody plant cover, annual plant cover) was a better predictor of nutrient concentrations than catchment-scale land use, particularly total imperviousness, a common measure of urbanisation. Flow was also important, with carbon and nutrient concentrations better described by reach- or catchment-scale attributes during the low flow period. The extent to which individual catchment and reach attributes influenced the distribution of nutrients in different stream zones was complex. However, our results suggest that planting woody vegetation can reduce nitrogen concentrations in surface water and fluvial sediments. Reducing the abundance of weedy annual species and restoring woody perennial species may further reduce phosphorus concentrations in surface water. We conclude that local riparian restoration can be a cost-effective strategy for managing excess nutrients and carbon in flat and permeable urban landscapes, particularly during low flow periods.

10.
AoB Plants ; 11(2): plz017, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31037212

RESUMO

The Australian arid zone (AAZ) has undergone aridification and the formation of vast sandy deserts since the mid-Miocene. Studies on AAZ organisms, particularly animals, have shown patterns of mesic ancestry, persistence in rocky refugia and range expansions in arid lineages. There has been limited molecular investigation of plants in the AAZ, particularly of taxa that arrived in Australia after the onset of aridification. Here we investigate populations of the widespread AAZ grass Triodia basedowii to determine whether there is evidence for a recent range expansion, and if so, its source and direction. We also undertake a dating analysis for the species complex to which T. basedowii belongs, in order to place its diversification in relation to changes in AAZ climate and landscapes. We analyse a genomic single nucleotide polymorphism data set from 17 populations of T. basedowii in a recently developed approach for detecting the signal and likely origin of a range expansion. We also use alignments from existing and newly sequenced plastomes from across Poaceae for analysis in BEAST to construct fossil-calibrated phylogenies. Across a range of sampling parameters and outgroups, we detected a consistent signal of westward expansion for T. basedowii, originating in central or eastern Australia. Divergence time estimation indicates that Triodia began to diversify in the late Miocene (crown 7.0-8.8 million years (Ma)), and the T. basedowii complex began to radiate during the Pleistocene (crown 1.4-2.0 Ma). This evidence for range expansion in an arid-adapted plant is consistent with similar patterns in AAZ animals and likely reflects a general response to the opening of new habitat during aridification. Radiation of the T. basedowii complex through the Pleistocene has been associated with preferences for different substrates, providing an explanation why only one lineage is widespread across sandy deserts.

11.
Plant Cell Environ ; 31(7): 915-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18315535

RESUMO

This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.


Assuntos
Desastres , Eucalyptus/efeitos dos fármacos , Inositol/análogos & derivados , Água/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Eucalyptus/fisiologia , Inositol/farmacologia , Osmose , Estações do Ano
12.
Tree Physiol ; 28(10): 1525-33, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18708334

RESUMO

We examined relationships between stable isotopes of carbon (delta(13)C) and oxygen (delta(18)O) in tree rings of Callitris columellaris F. Muell in the semi-arid Pilbara region of north-western Australia. To test the hypothesis that stomatal control of photosynthesis decreases during drier periods, we developed delta(13)C and delta(18)O chronologies spanning 1919-1999, and used a permutation regression approach to relate a 21-year running correlation between delta(13)C and delta(18)O to rainfall and temperature at Marble Bar and our study site. The relationship between delta(13)C and delta(18)O switched from being always negative before 1955 to being consistently positive after 1976, suggesting an increase in stomatal control of photosynthesis in recent decades. Changes in the delta(13)C-delta(18)O relationship reflected changes in rainfall, which has increased in the region by 30% since 1976. The correlation between delta(13)C and delta(18)O was positively related to the 21-year running mean of normalized rainfall anomalies at both the study site (P = 0.045, Adj. r(2) = 0.47) and Marble Bar (P = 0.046, Adj. r(2) = 0.48). In addition, the delta(13)C-delta(18)O correlation was negatively related (P = 0.047, Adj. r(2) = 0.61) to temperatures at Marble Bar. Our interpretation of the role of changes in climate affecting the relationship between tree-ring delta(13)C and delta(18)O is supported by evidence from the isotope composition of foliage samples: foliar delta(13)C and delta(18)O were negatively correlated with log stomatal conductance (delta(13)C, r = -0.41; delta(18)O, r = -0.42), whereas the correlation between foliar delta(13)C and delta(18)O was positive (r = 0.63, P = 0.027) after the summer wet period. Our data indicate that stomatal control of photosynthesis in Callitris adjusts to region-wide changes in climate and that, in a warmer and drier world, trees might adapt by increasing non-stomatal control of photosynthesis.


Assuntos
Carbono/metabolismo , Cupressaceae/fisiologia , Oxigênio/metabolismo , Fotossíntese , Estômatos de Plantas/fisiologia , Aclimatação/fisiologia , Isótopos de Carbono , Clima , Cupressaceae/metabolismo , Isótopos de Oxigênio
13.
Front Microbiol ; 9: 1703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105009

RESUMO

Sediment microorganisms can have profound influence on productivity and functioning of marine ecosystems through their critical roles in regulating biogeochemical processes. However, the identity of sediment microorganisms that mediate organic matter turnover and nutrient cycling in seagrass sediments is only poorly understood. Here, we used metagenomic sequencing to investigate shifts in the structure and functioning of the microbial community of seagrass sediments across a salinity and phosphorus (P) availability gradient in Shark Bay, WA, Australia. This iconic ecosystem is oligotrophic and hypersaline with abundant seagrass meadows that directly contribute Shark Bay's status as a World Heritage Site. We show that sediment phosphonate metabolism genes as well as enzyme activities increase in hypersaline conditions with lower soluble reactive phosphate in the water column. Given that sediment organic P content is also highest where P concentrations in the water column are low, we suggest that microbial processing of organic P can contribute to the P requirements of seagrasses at particularly oligotrophic sites. Seagrass meadows are often highly productive in oligotrophic waters, and our findings suggest that an increase in the functional capacity of microbial communities in seagrass sediments to break down organic P may contribute to the high productivity of seagrass meadows under oligotrophic conditions. When compared to soil and sediment metagenomes from other aquatic and terrestrial ecosystems, we also show microbial communities in seagrass sediments have a disproportionately high abundance of putative phosphorus and sulfur metabolism genes, which may have played an important evolutionary role in allowing these angiosperms to recolonize the marine environment and prosper under oligotrophic conditions.

14.
Ecol Evol ; 7(16): 6595-6605, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861260

RESUMO

In fishes, alterations to the natural flow regime are associated with divergence in body shape morphology compared with individuals from unaltered habitats. However, it is unclear whether this morphological divergence is attributable to evolutionary responses to modified flows, or is a result of phenotypic plasticity. Fishes inhabiting arid regions are ideal candidates for studying morphological plasticity as they are frequently exposed to extreme natural hydrological variability. We examined the effect of early exposure to flows on the development of body shape morphology in the western rainbowfish (Melanotaenia australis), a freshwater fish that is native to semiarid northwest Australia. Wild fish were collected from a region (the Hamersley Ranges) where fish in some habitats are subject to altered water flows due to mining activity. The offspring of wild-caught fish were reared in replicated fast-flow or slow-flow channels, and geometric morphometric analyses were used to evaluate variation in fish body shape following 3, 6, 9, and 12 months of exposure. Water flows influenced fish morphology after 6 and 9 months of flow exposure, with fish in fast-flow environments displaying a more robust body shape than those in slow-flow habitats. No effect of flow exposure was observed at 3 and 12 months. Fishes also showed significant morphological variation within flow treatments, perhaps due to subtle differences in water flow among the replicate channels. Our findings suggest that early exposure to water flows can induce shifts in body shape morphology in arid zone freshwater fishes. Morphological plasticity may act to buffer arid zone populations from the impacts of anthropogenic activities, but further studies are required to link body shape plasticity with behavioral performance in habitats with modified flows.

15.
J Geophys Res Atmos ; 121(21): 12820-12838, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29780675

RESUMO

Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 CE), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multi-decadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March-April-May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased towards summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (RCP 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multi-year drought anomalies matching or exceeding the intensity of the Millennium Drought.

16.
PLoS One ; 10(6): e0128533, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039148

RESUMO

An understanding of past hydroclimatic variability is critical to resolving the significance of recent recorded trends in Australian precipitation and informing climate models. Our aim was to reconstruct past hydroclimatic variability in semi-arid northwest Australia to provide a longer context within which to examine a recent period of unusually high summer-autumn precipitation. We developed a 210-year ring-width chronology from Callitris columellaris, which was highly correlated with summer-autumn (Dec-May) precipitation (r = 0.81; 1910-2011; p < 0.0001) and autumn (Mar-May) self-calibrating Palmer drought severity index (scPDSI, r = 0.73; 1910-2011; p < 0.0001) across semi-arid northwest Australia. A linear regression model was used to reconstruct precipitation and explained 66% of the variance in observed summer-autumn precipitation. Our reconstruction reveals inter-annual to multi-decadal scale variation in hydroclimate of the region during the last 210 years, typically showing periods of below average precipitation extending from one to three decades and periods of above average precipitation, which were often less than a decade. Our results demonstrate that the last two decades (1995-2012) have been unusually wet (average summer-autumn precipitation of 310 mm) compared to the previous two centuries (average summer-autumn precipitation of 229 mm), coinciding with both an anomalously high frequency and intensity of tropical cyclones in northwest Australia and the dominance of the positive phase of the Southern Annular Mode.


Assuntos
Cupressaceae/crescimento & desenvolvimento , Modelos Estatísticos , Chuva , Árvores/crescimento & desenvolvimento , Austrália , Clima , Secas , Tempo
17.
Ecol Evol ; 5(16): 3272-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26380663

RESUMO

Environmental variation is a potent force affecting phenotypic expression. While freshwater fishes have provided a compelling example of the link between the environment and phenotypic diversity, few studies have been conducted with arid-zone fishes, particularly those that occur in geographically isolated regions where species typically inhabit intermittent and ephemeral creeks. We investigated morphological variation of a freshwater fish (the western rainbowfish, Melanotaenia australis) inhabiting creeks in the Pilbara region of northwest Australia to determine whether body shape variation correlated with local environmental characteristics, including water velocity, habitat complexity, predator presence, and food availability. We expected that the geographic isolation of creeks within this arid region would result in habitat-specific morphological specializations. We used landmark-based geometric morphometrics to quantify the level of morphological variability in fish captured from 14 locations within three distinct subcatchments of a major river system. Western rainbowfish exhibited a range of morphologies, with variation in body depth accounting for a significant proportion (>42%) of the total variance in shape. Sexual dimorphism was also apparent, with males displaying deeper bodies than females. While the measured local habitat characteristics explained little of the observed morphological variation, fish displayed significant morphological differentiation at the level of the subcatchment. Local adaptation may partly explain the geographic patterns of body shape variation, but fine-scale genetic studies are required to disentangle the effects of genetic differentiation from environmentally determined phenotypic plasticity in body shape. Developing a better understanding of environment-phenotype relationships in species from arid regions will provide important insights into ecological and evolutionary processes in these unique and understudied habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA