Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137044

RESUMO

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Assuntos
Ciliopatias , Hamartoma , Doenças Hipotalâmicas , Ciliopatias/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/genética , Imageamento por Ressonância Magnética
2.
Am J Hum Genet ; 99(2): 423-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27453577

RESUMO

Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease.


Assuntos
Epilepsias Parciais/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Doenças Hipotalâmicas/genética , Mutação/genética , Transdução de Sinais/genética , Proteína de Ligação a CREB/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Exoma/genética , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/genética , Perda de Heterozigosidade , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
3.
Ann Neurol ; 83(6): 1133-1146, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29679388

RESUMO

OBJECTIVE: Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS: We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS: We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION: We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.


Assuntos
Encéfalo/patologia , Epilepsia Resistente a Medicamentos/genética , Proteínas de Transporte de Monossacarídeos/genética , Neocórtex/patologia , Adolescente , Criança , Exoma/genética , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Neurônios/patologia , Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR/genética , Adulto Jovem
4.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194818

RESUMO

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/genética , Estudos de Associação Genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/química , Humanos , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Fenótipo , Gravidez , Estrutura Terciária de Proteína
5.
Epilepsia ; 57(3): 376-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26799155

RESUMO

OBJECTIVE: Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. METHODS: RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. RESULTS: Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. SIGNIFICANCE: By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology.


Assuntos
Giro Denteado/metabolismo , Giro Denteado/patologia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/metabolismo , Análise de Componente Principal/métodos , Adulto , Giro Denteado/cirurgia , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/cirurgia , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-28864461

RESUMO

Hemimegalencephaly (HME) is a heterogeneous cortical malformation characterized by enlargement of one cerebral hemisphere. Somatic variants in mammalian target of rapamycin (mTOR) regulatory genes have been implicated in some HME cases; however, ∼70% have no identified genetic etiology. Here, we screened two HME patients to identify disease-causing somatic variants. DNA from leukocytes, buccal swabs, and surgically resected brain tissue from two HME patients were screened for somatic variants using genome-wide genotyping arrays or sequencing of the protein-coding regions of the genome. Functional studies were performed to evaluate the molecular consequences of candidate disease-causing variants. Both HME patients evaluated were found to have likely disease-causing variants in DNA extracted from brain tissue but not in buccal swab or leukocyte DNA, consistent with a somatic mutational mechanism. In the first case, a previously identified disease-causing somatic single nucleotide in MTOR was identified. In the second case, we detected an overrepresentation of the alleles inherited from the mother on Chromosome 16 in brain tissue DNA only, indicative of somatic uniparental disomy (UPD) of the p-arm of Chromosome 16. Using methylation analyses, an imprinted locus on 16p spanning ZNF597 was identified, which results in increased expression of ZNF597 mRNA and protein in the brain tissue of the second case. Enhanced mTOR signaling was observed in tissue specimens from both patients. We speculate that overexpression of maternally expressed ZNF597 led to aberrant hemispheric development in the patient with somatic UPD of Chromosome 16p possibly through modulation of mTOR signaling.


Assuntos
Hemimegalencefalia/genética , Alelos , Encéfalo/citologia , Pré-Escolar , Cromossomos/genética , Cromossomos Humanos Par 16/genética , DNA/genética , Metilação de DNA/genética , Feminino , Impressão Genômica , Genótipo , Humanos , Lactente , Dissomia Uniparental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA