Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202301611, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973914

RESUMO

Low-valent metal-organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low-valent metal-organic material constructed from phosphine linkers and IrI nodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2 and catalyzes the reductive formation of enamines from amides.

2.
J Am Chem Soc ; 142(49): 20566-20571, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249842

RESUMO

A zirconium-catalyzed hydroaminoalkylation of alkynes to access α,ß,γ-substituted allylic amines in an atom-economic fashion is reported. The reaction is compatible with N-(trimethylsilyl)benzylamine and a variety of N-benzylaniline substrates, with the latter giving the allylic amine as the sole organic product. Various internal alkynes with electron-withdrawing and electron-donating substituents were tolerated. Model intermediates of the reaction were synthesized and structurally characterized. Stoichiometric studies on key intermediates revealed that the open coordination sphere at zirconium, imparted by the tethered bis(ureate) ligand, is crucial for the coordination of neutral donors. These complexes may serve as models for the inner-sphere protonolysis reactions required for catalytic turnover.

3.
Inorg Chem ; 59(8): 5256-5260, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32223129

RESUMO

The reductive coupling of alcohols using vanadium pyridonate catalysts is reported. This attractive approach for C(sp3)-C(sp3) bond formation uses an oxophilic, earth-abundant metal for a catalytic deoxygenation reaction. Several pyridonate complexes of vanadium were synthesized, giving insight into the coordination chemistry of this understudied class of compounds. Isolated intermediates provide experimental mechanistic evidence that complements reported computational mechanistic proposals for the reductive coupling of alcohols. In contrast to previous mononuclear vanadium(V)/vanadium(III)/vanadium(IV) cycles, this pyridonate catalyst system is proposed to proceed by a vanadium(III)/vanadium(IV) cycle involving bimetallic intermediates.

4.
J Vis Exp ; (195)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246880

RESUMO

Metal-organic frameworks (MOFs) are the subject of intense research focus due to their potential applications in gas storage and separation, biomedicine, energy, and catalysis. Recently, low-valent MOFs (LVMOFs) have been explored for their potential use as heterogeneous catalysts, and multitopic phosphine linkers have been shown to be a useful building block for the formation of LVMOFs. However, the synthesis of LVMOFs using phosphine linkers requires conditions that are distinct from those in the majority of the MOF synthetic literature, including the exclusion of air and water and the use of unconventional modulators and solvents, making it somewhat more challenging to access these materials. This work serves as a general tutorial for the synthesis of LVMOFs with phosphine linkers, including information on the following: 1) the judicious choice of the metal precursor, modulator, and solvent; 2) the experimental procedures, air-free techniques, and required equipment; 3) the proper storage and handling of the resultant LVMOFs; and 4) useful characterization methods for these materials. The intention of this report is to lower the barrier to this new subfield of MOF research and facilitate advancements toward novel catalytic materials.


Assuntos
Estruturas Metalorgânicas , Fosfinas , Metais , Água , Solventes
5.
Dalton Trans ; 51(38): 14654-14663, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36093858

RESUMO

The synthesis, structure, and reactivity of vanadium pyridonate complexes are described. Vanadium(III) pyridonate complexes were accessed through protonolysis and reduction of a tetrakis(amido)vanadium(IV) starting material. Bis(pyridonate) vanadium(IV) precursors could be isolated depending on the amount of proteoligand added. The targeted vanadium(III) species tend to form dimers, but monomeric complexes can be achieved in the presence of neutral donors such as amines or pyridine derivatives or through the use of sterically demanding proligands. The reduction process is proposed to involve dimeric intermediates and be mediated by the amine released from protonolysis, thereby forming the corresponding imine as a byproduct. Isolated amine complexes of vanadium(III) are presented. In contrast, bis(amidate)vanadium(IV) complexes were not found to undergo a similar reduction. This work informs on design principles for the synthesis and application of new vanadium pyridonate catalysts for transformations involving dimerization and PCET for changes in oxidation state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA