Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(6): e103777, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090359

RESUMO

Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.


Assuntos
Genoma Humano/genética , RNA não Traduzido/classificação , Terminologia como Assunto , Humanos , RNA não Traduzido/genética
2.
Trends Genet ; 36(7): 461-463, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544447

RESUMO

Since 2002, published miRNAs have been collected and named by the online repository miRBase. However, with 11 000 annual publications this has become challenging. Recently, four specialized miRNA databases were published, addressing particular needs for diverse scientific communities. This development provides major opportunities for the future of miRNA annotation and nomenclature.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular/normas , Análise de Sequência de RNA/normas , Software , Genômica , Humanos
3.
Nucleic Acids Res ; 49(D1): D192-D200, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211869

RESUMO

Rfam is a database of RNA families where each of the 3444 families is represented by a multiple sequence alignment of known RNA sequences and a covariance model that can be used to search for additional members of the family. Recent developments have involved expert collaborations to improve the quality and coverage of Rfam data, focusing on microRNAs, viral and bacterial RNAs. We have completed the first phase of synchronising microRNA families in Rfam and miRBase, creating 356 new Rfam families and updating 40. We established a procedure for comprehensive annotation of viral RNA families starting with Flavivirus and Coronaviridae RNAs. We have also increased the coverage of bacterial and metagenome-based RNA families from the ZWD database. These developments have enabled a significant growth of the database, with the addition of 759 new families in Rfam 14. To facilitate further community contribution to Rfam, expert users are now able to build and submit new families using the newly developed Rfam Cloud family curation system. New Rfam website features include a new sequence similarity search powered by RNAcentral, as well as search and visualisation of families with pseudoknots. Rfam is freely available at https://rfam.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , Metagenoma , MicroRNAs/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , RNA Viral/genética , Bactérias/genética , Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Humanos , Internet , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/classificação , RNA Bacteriano/metabolismo , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Software , Vírus/genética , Vírus/metabolismo
4.
Nucleic Acids Res ; 47(D1): D155-D162, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30423142

RESUMO

miRBase catalogs, names and distributes microRNA gene sequences. The latest release of miRBase (v22) contains microRNA sequences from 271 organisms: 38 589 hairpin precursors and 48 860 mature microRNAs. We describe improvements to the database and website to provide more information about the quality of microRNA gene annotations, and the cellular functions of their products. We have collected 1493 small RNA deep sequencing datasets and mapped a total of 5.5 billion reads to microRNA sequences. The read mapping patterns provide strong support for the validity of between 20% and 65% of microRNA annotations in different well-studied animal genomes, and evidence for the removal of >200 sequences from the database. To improve the availability of microRNA functional information, we are disseminating Gene Ontology terms annotated against miRBase sequences. We have also used a text-mining approach to search for microRNA gene names in the full-text of open access articles. Over 500 000 sentences from 18 542 papers contain microRNA names. We score these sentences for functional information and link them with 12 519 microRNA entries. The sentences themselves, and word clouds built from them, provide effective summaries of the functional information about specific microRNAs. miRBase is publicly and freely available at http://mirbase.org/.


Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Genômica , MicroRNAs/genética , Animais , Biologia Computacional/métodos , Mineração de Dados , Ontologia Genética , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Navegador
5.
PLoS Genet ; 14(3): e1007253, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529031

RESUMO

Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have exploited the recently developed barcoded ncRNA gene deletion strain collections in the yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs, snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six conditions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain collections arrayed individually onto solid rich media. These analyses revealed many novel environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key information on the importance of each specific ncRNA in every condition. Co-fitness analysis using fitness data from the heterozygous ncRNA deletion strain collection identified two ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive fitness data for each ncRNA deletion strain has been compiled into an easy to navigate database called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expression in the heterozygote background identifying both repression and induction of nearby genes. Additionally, we discovered a function for SUT527 in the expression, 3' end formation and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid complementation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans. Overall, our findings provide important new insights into the function of ncRNAs.


Assuntos
RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Deleção de Genes , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Aptidão Genética , Haploidia , Heterozigoto , Fenótipo , RNA Fúngico , Saccharomyces cerevisiae/fisiologia
6.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
7.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255483

RESUMO

In eukaryotes, microRNAs (miRNAs) have roles in development, homeostasis, disease and the immune response. Recent work has shown that plant and mammalian miRNAs also mediate cross-kingdom and cross-domain communications. However, these studies remain controversial and are lacking critical mechanistic explanations. Bacteria do not produce miRNAs themselves, and therefore it is unclear how these eukaryotic RNA molecules could function in the bacterial recipient. In this review, we compare and contrast the biogenesis and functions of regulatory RNAs in eukaryotes and bacteria. As a result, we discovered several conserved features and homologous components in these distinct pathways. These findings enabled us to propose novel mechanisms to explain how eukaryotic miRNAs could function in bacteria. Further understanding in this area is necessary to validate the findings of existing studies and could facilitate the use of miRNAs as novel tools for the directed remodelling of the human microbiota.


Assuntos
Bactérias/genética , Eucariotos/genética , MicroRNAs/genética , RNA/genética , Humanos , Microbiota/genética
8.
Genome Res ; 26(1): 85-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518483

RESUMO

MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Tribolium/embriologia , Tribolium/genética , Animais , Regulação para Baixo , Drosophila/genética , Desenvolvimento Embrionário/genética , Biblioteca Gênica , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Análise de Sequência de RNA
9.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794554

RESUMO

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA não Traduzido/química , Animais , Genômica , Humanos , Nucleotídeos/química , Análise de Sequência de RNA , Especificidade da Espécie
10.
BMC Biol ; 15(1): 62, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28756775

RESUMO

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Aranhas/genética , Animais , Feminino , Masculino , Sintenia
11.
PLoS Biol ; 12(11): e1002005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25423365

RESUMO

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.


Assuntos
Artrópodes/genética , Genoma , Sintenia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Metilação de DNA , Evolução Molecular , Feminino , Genoma Mitocondrial , Hormônios/genética , Masculino , Família Multigênica , Filogenia , Polimorfismo Genético , Proteínas Quinases/genética , RNA não Traduzido/genética , Receptores Odorantes/genética , Selenoproteínas/genética , Cromossomos Sexuais , Fatores de Transcrição/genética
12.
Nucleic Acids Res ; 43(Database issue): D123-9, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25352543

RESUMO

The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA não Traduzido/química , Mapeamento Cromossômico , Humanos , Internet , RNA não Traduzido/genética , Análise de Sequência de RNA
13.
RNA ; 20(3): 269-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442610

RESUMO

Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such "identity elements" are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of "anticodon shifts" to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation-based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.


Assuntos
Anticódon/genética , Caenorhabditis/genética , Candida albicans/genética , Drosophila melanogaster/genética , Genoma , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Animais , Pareamento de Bases , Biologia Computacional , Evolução Molecular , Mutação/genética , Conformação de Ácido Nucleico
14.
RNA ; 20(3): 360-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24448446

RESUMO

MicroRNAs are short non-protein-coding RNAs that regulate gene expression at the post-transcriptional level and are essential for the embryonic development of multicellular animals. Comparative genome-scale analyses have revealed that metazoan evolution is accompanied by the continuous acquisition of novel microRNA genes. This suggests that novel microRNAs may promote innovation and diversity in development. We determined the evolutionary origins of extant Drosophila microRNAs and estimated the sequence divergence between the 130 orthologous microRNAs in Drosophila melanogaster and Drosophila virilis, separated by 63 million years of evolution. We then generated small RNA sequencing data sets covering D. virilis development and explored the relationship between microRNA conservation and expression in a developmental context. We find that late embryonic, larval, and adult stages are dominated by conserved microRNAs. This pattern, however, does not hold for the early embryo, where rapidly evolving microRNAs are uniquely present at high levels in both species. The group of fast-evolving microRNAs that are highly expressed in the early embryo belong to two Drosophilid lineage-specific clusters: mir-310 ∼ 313 and mir-309 ∼ 6. These clusters have particularly complex evolutionary histories of duplication, gain, and loss. Our analyses suggest that the early embryo is a more permissive environment for microRNA changes and innovations. Fast-evolving microRNAs, therefore, have the opportunity to become preferentially integrated in early developmental processes, and may impact the evolution of development. The relationship between microRNA conservation and expression throughout the development of Drosophila differs from that previously observed for protein-coding genes.


Assuntos
Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Animais , Sequência de Bases , Sequência Conservada , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico
15.
Bioinformatics ; 31(10): 1592-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609791

RESUMO

MOTIVATION: Many studies have investigated the differential expression of microRNAs (miRNAs) in disease states and between different treatments, tissues and developmental stages. Given a list of perturbed miRNAs, it is common to predict the shared pathways on which they act. The standard test for functional enrichment typically yields dozens of significantly enriched functional categories, many of which appear frequently in the analysis of apparently unrelated diseases and conditions. RESULTS: We show that the most commonly used functional enrichment test is inappropriate for the analysis of sets of genes targeted by miRNAs. The hypergeometric distribution used by the standard method consistently results in significant P-values for functional enrichment for targets of randomly selected miRNAs, reflecting an underlying bias in the predicted gene targets of miRNAs as a whole. We developed an algorithm to measure enrichment using an empirical sampling approach, and applied this in a reanalysis of the gene ontology classes of targets of miRNA lists from 44 published studies. The vast majority of the miRNA target sets were not significantly enriched in any functional category after correction for bias. We therefore argue against continued use of the standard functional enrichment method for miRNA targets.


Assuntos
Algoritmos , Biologia Computacional/métodos , Regulação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular , Análise de Sequência de RNA/métodos , Humanos
16.
Nucleic Acids Res ; 42(Database issue): D68-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275495

RESUMO

We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Anotação de Sequência Molecular , Análise de Sequência de RNA , Animais , Humanos , Internet , Camundongos
17.
Nucleic Acids Res ; 41(16): 7745-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23775791

RESUMO

Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations.


Assuntos
Evolução Molecular , MicroRNAs/genética , Animais , Drosophila melanogaster/genética , Genoma , MicroRNAs/química
18.
Nucleic Acids Res ; 41(5): 3352-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23335784

RESUMO

In Drosophila melanogaster, the iab-4/iab-8 locus encodes bi-directionally transcribed microRNAs that regulate the function of flanking Hox transcription factors. We show that bi-directional transcription, temporal and spatial expression patterns and Hox regulatory function of the iab-4/iab-8 locus are conserved between fly and the beetle Tribolium castaneum. Computational predictions suggest iab-4 and iab-8 microRNAs can target common sites, and cell-culture assays confirm that iab-4 and iab-8 function overlaps on Hox target sites in both fly and beetle. However, we observe key differences in the way Hox genes are targeted. For instance, abd-A transcripts are targeted only by iab-8 in Drosophila, whereas both iab-4 and iab-8 bind to Tribolium abd-A. Our evolutionary and functional characterization of a bi-directionally transcribed microRNA establishes the iab-4/iab-8 system as a model for understanding how multiple products from sense and antisense microRNAs target common sites.


Assuntos
Drosophila melanogaster/genética , MicroRNAs/genética , Transcrição Gênica , Tribolium/genética , Animais , Linhagem Celular , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes de Insetos , Loci Gênicos , MicroRNAs/metabolismo , Filogenia , Interferência de RNA
19.
RNA ; 17(11): 1941-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21940779

RESUMO

During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA/química , Animais , Sequência de Bases , Humanos
20.
Bioinformatics ; 28(3): 318-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22171334

RESUMO

MOTIVATION: Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs. RESULTS: Here we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs. AVAILABILITY AND IMPLEMENTATION: A bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/ CONTACT: antonio.marco@manchester.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Abelhas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/análise , Análise de Sequência de RNA/métodos , Tribolium/genética , Algoritmos , Animais , Cor , MicroRNAs/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA