Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 629(8014): 1126-1132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750356

RESUMO

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Temperatura , Sensação Térmica , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sensação Térmica/genética , Sensação Térmica/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Fatores de Transcrição/metabolismo , Transdução de Sinais
2.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018271

RESUMO

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Assuntos
Dióxido de Carbono , Mudança Climática , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Água/metabolismo
4.
Nature ; 579(7799): 409-414, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188942

RESUMO

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


Assuntos
Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Arabidopsis/química , Espectrometria de Massas , Proteoma/análise , Proteoma/química , Proteômica , Motivos de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Especificidade de Órgãos , Fosfoproteínas/análise , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Proteoma/biossíntese , Proteoma/genética , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcriptoma
5.
Nature ; 583(7815): 271-276, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612234

RESUMO

Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein-protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein-protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes , Transcrição Gênica
6.
Plant J ; 119(2): 1112-1133, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613775

RESUMO

Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas , Proteínas Serina-Treonina Quinases , Proteômica , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Metabolismo Energético , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2C/genética , Multiômica
7.
Plant J ; 117(1): 264-279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844131

RESUMO

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Assuntos
Aquaporinas , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fosforilação , Aquaporinas/genética , Aquaporinas/metabolismo , Água/metabolismo
8.
Plant Cell ; 34(10): 3860-3872, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35792867

RESUMO

Altering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect. CRISPR/Cas9-mediated ZmAbh4 inactivation increased WUE without growth reductions in well-watered conditions. ZmAbh4 encodes an enzyme that hydroxylates the phytohormone abscisic acid (ABA) and initiates its catabolism. Stomatal conductance is regulated by ABA and emerged as a major link between variation in WUE and discrimination against the heavy carbon isotope (Δ13C) during photosynthesis in the C4 crop maize. Changes in Δ13C persisted in kernel material, which offers an easy-to-screen proxy for WUE. Our results establish a direct physiological and genetic link between WUE and Δ13C through a single gene with potential applications in maize breeding.


Assuntos
Ácido Abscísico , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Alelos , Isótopos de Carbono , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo
9.
Cell ; 136(1): 21-3, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135884

RESUMO

The search for receptors for abscisic acid (ABA), a phytohormone central to the response of plants to biotic and abiotic stress, has been controversial. In this issue, Pandey et al. (2009) report the identification of two membrane proteins from Arabidopsis, GTG1 and GTG2, that bind ABA in vitro and mediate ABA responses in vivo.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica de Plantas
10.
EMBO J ; 38(17): e101859, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31368592

RESUMO

The phytohormone abscisic acid (ABA) regulates plant responses to abiotic stress, such as drought and high osmotic conditions. The multitude of functionally redundant components involved in ABA signaling poses a major challenge for elucidating individual contributions to the response selectivity and sensitivity of the pathway. Here, we reconstructed single ABA signaling pathways in yeast for combinatorial analysis of ABA receptors and coreceptors, downstream-acting SnRK2 protein kinases, and transcription factors. The analysis shows that some ABA receptors stimulate the pathway even in the absence of ABA and that SnRK2s are major determinants of ABA responsiveness by differing in the ligand-dependent control. Five SnRK2s, including SnRK2.4 known to be active under osmotic stress in plants, activated ABA-responsive transcription factors and were regulated by ABA receptor complexes in yeast. In the plant tissue, SnRK2.4 and ABA receptors competed for coreceptor interaction in an ABA-dependent manner consistent with a tight integration of SnRK2.4 into the ABA signaling pathway. The study establishes the suitability of the yeast system for the dissection of core signaling cascades and opens up future avenues of research on ligand-receptor regulation.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Leveduras/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Fosforilação , Engenharia de Proteínas , Proteínas Serina-Treonina Quinases/genética , Leveduras/genética
11.
Plant Cell ; 31(11): 2697-2710, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511315

RESUMO

Arabidopsis (Arabidopsis thaliana) efficiently synthesizes the antifungal phytoalexin camalexin without the apparent release of bioactive intermediates, such as indole-3-acetaldoxime, suggesting that the biosynthetic pathway of this compound is channeled by the formation of an enzyme complex. To identify such protein interactions, we used two independent untargeted coimmunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B15 and CYP71A13 as baits and determined that the camalexin biosynthetic P450 enzymes copurified with these enzymes. These interactions were confirmed by targeted co-IP and Förster resonance energy transfer measurements based on fluorescence lifetime microscopy (FRET-FLIM). Furthermore, the interaction of CYP71A13 and Arabidopsis P450 Reductase1 was observed. We detected increased substrate affinity of CYP79B2 in the presence of CYP71A13, indicating an allosteric interaction. Camalexin biosynthesis involves glutathionylation of the intermediary indole-3-cyanohydrin, which is synthesized by CYP71A12 and especially CYP71A13. FRET-FLIM and co-IP demonstrated that the glutathione transferase GSTU4, which is coexpressed with Trp- and camalexin-specific enzymes, is physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knockout and reduced in GSTU4-overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather plays a role in a competing mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas/fisiologia , Indóis/metabolismo , Tiazóis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sesquiterpenos , Nicotiana/genética , Nicotiana/metabolismo , Fitoalexinas
12.
Plant Physiol ; 182(4): 1920-1932, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31992602

RESUMO

Phytochelatin synthase (PCS) is a key component of heavy metal detoxification in plants. PCS catalyzes both the synthesis of the peptide phytochelatin from glutathione and the degradation of glutathione conjugates via peptidase activity. Here, we describe a role for PCS in disease resistance against plant pathogenic fungi. The pen4 mutant, which is allelic to cadmium insensitive1 (cad1/pcs1) mutants, was recovered from a screen for Arabidopsis mutants with reduced resistance to the nonadapted barley fungal pathogen Blumeria graminis f. sp. hordei PCS1, which is found in the cytoplasm of cells of healthy plants, translocates upon pathogen attack and colocalizes with the PEN2 myrosinase on the surface of immobilized mitochondria. pcs1 and pen2 mutant plants exhibit similar metabolic defects in the accumulation of pathogen-inducible indole glucosinolate-derived compounds, suggesting that PEN2 and PCS1 act in the same metabolic pathway. The function of PCS1 in this pathway is independent of phytochelatin synthesis and deglycination of glutathione conjugates, as catalytic-site mutants of PCS1 are still functional in indole glucosinolate metabolism. In uncovering a peptidase-independent function for PCS1, we reveal this enzyme to be a moonlighting protein important for plant responses to both biotic and abiotic stresses.


Assuntos
Ascomicetos/metabolismo , Mitocôndrias/metabolismo , Fitoquelatinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
13.
Plant Physiol ; 180(2): 1066-1080, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886115

RESUMO

Improving the water use efficiency (WUE) of crop plants without trade-offs in growth and yield is considered a utopic goal. However, recent studies on model plants show that partial restriction of transpiration can occur without a reduction in CO2 uptake and photosynthesis. In this study, we analyzed the potentials and constraints of improving WUE in Arabidopsis (Arabidopsis thaliana) and in wheat (Triticum aestivum). We show that the analyzed Arabidopsis wild-type plants consume more water than is required for unrestricted growth. WUE was enhanced without a growth penalty by modulating abscisic acid (ABA) responses either by using overexpression of specific ABA receptors or deficiency of ABA coreceptors. Hence, the plants showed higher water productivity compared with the wild-type plants; that is, equal growth with less water. The high WUE trait was resilient to changes in light intensity and water availability, but it was sensitive to the ambient temperature. ABA application to plants generated a partial phenocopy of the water-productivity trait. ABA application, however, was never as effective as genetic modification in enhancing water productivity, probably because ABA indiscriminately targets all ABA receptors. ABA agonists selective for individual ABA receptors might offer an approach to phenocopy the water-productivity trait of the high WUE lines. ABA application to wheat grown under near-field conditions improved WUE without detectable growth trade-offs. Wheat yields are heavily impacted by water deficit, and our identification of this crop as a promising target for WUE improvement may help contribute to greater food security.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Triticum/fisiologia , Água/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ecótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Temperatura , Triticum/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 114(38): 10280-10285, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874521

RESUMO

The phytohormone abscisic acid (ABA) is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which, together with a plant-specific subclade of protein phosphatase 2C (PP2C), form functional holoreceptors. The Arabidopsis genome encodes nine PP2C coreceptors and 14 different RCARs, which can be divided into three subfamilies. The presence of these gene families in higher plants points to the existence of an intriguing regulatory network and poses questions as to the functional compatibility and specificity of receptor-coreceptor interactions. Here, we analyzed all RCAR-PP2C combinations for their capacity to regulate ABA signaling by transient expression in Arabidopsis protoplasts. Of 126 possible RCAR-PP2C pairings, 113 were found to be functional. The three subfamilies within the RCAR family showed different sensitivities to regulating the ABA response at basal ABA levels when efficiently expressed. At exogenous high ABA levels, the RCARs regulated most PP2Cs and activated the ABA response to a similar extent. The PP2C AHG1 was regulated only by RCAR1/PYL9, RCAR2/PYL7, and RCAR3/PYL8, which are characterized by a unique tyrosine residue. Site-directed mutagenesis of RCAR1 showed that its tyrosine residue is critical for AHG1 interaction and regulation. Furthermore, the PP2Cs HAI1 to HAI3 were regulated by all RCARs, and the ABA receptor RCAR4/PYL10 showed ABA-dependent PP2C regulation. The findings unravel the interaction network of possible RCAR-PP2C pairings and their different potentials to serve a rheostat function for integrating fluctuating hormone levels into the ABA-response pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Redes Reguladoras de Genes , Genoma de Planta , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C/metabolismo
15.
Theor Appl Genet ; 132(1): 53-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30244394

RESUMO

KEY MESSAGE: A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed. We combined genetic, phenomic, and physiological approaches to understand the relationship between growth, stomatal conductance, water use efficiency, and carbon isotope composition in maize (Zea mays L.). Using near-isogenic lines derived from a maize introgression library, we analysed the effects of a genomic region previously identified as affecting carbon isotope composition. We show stability of trait expression over several years of field trials and demonstrate in the phenotyping platform Phenodyn that the same genomic region also influences the sensitivity of leaf growth to evaporative demand and soil water potential. Our results suggest that the studied genomic region affecting carbon isotope discrimination also harbours quantitative trait loci playing a role in maize drought sensitivity possibly via stomatal behaviour and development. We propose that the observed phenotypes collectively originate from altered stomatal conductance, presumably via abscisic acid.


Assuntos
Isótopos de Carbono/análise , Secas , Água/fisiologia , Zea mays/genética , Zea mays/fisiologia , Cromossomos de Plantas/genética , Fenótipo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Locos de Características Quantitativas , Estresse Fisiológico
16.
Ann Bot ; 124(4): 581-590, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30629104

RESUMO

BACKGROUND AND AIMS: Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. METHODS: ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. KEY RESULTS: The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). CONCLUSIONS: The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Ácido Abscísico , Secas , Água
18.
Proc Natl Acad Sci U S A ; 113(24): 6791-6, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247417

RESUMO

Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis WUE was assessed by three independent approaches involving gravimetric analyses, (13)C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia , Água/metabolismo , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Folhas de Planta/genética
19.
Plant J ; 92(2): 199-210, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28746755

RESUMO

The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Populus/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Genes de Plantas/genética , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Populus/fisiologia , Receptores de Superfície Celular/genética
20.
New Phytol ; 218(2): 414-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29332310

RESUMO

Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA