Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(1): 271-320, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31512990

RESUMO

The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.


Assuntos
Sistema Nervoso Central/fisiologia , Locomoção , Vertebrados/fisiologia , Animais , Gânglios da Base/fisiologia , Evolução Biológica , Cerebelo/fisiologia , Humanos , Lampreias/genética , Lampreias/fisiologia , Camundongos , Medula Espinal/fisiologia , Vertebrados/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(45): e2313058120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922329

RESUMO

The basal ganglia are important for action initiation, selection, and motor learning. The input level, the striatum, receives input preferentially from the cortex and thalamus and is to 95% composed of striatal projection neurons (SPNs) with sparse GABAergic collaterals targeting distal dendrites of neighboring SPNs, in a distance-dependent manner. The remaining 5% are GABAergic and cholinergic interneurons. Our aim here is to investigate the role of surround inhibition for the intrinsic function of the striatum. Large-scale striatal networks of 20 to 40 thousand neurons were simulated with detailed multicompartmental models of different cell types, corresponding to the size of a module of the dorsolateral striatum, like the forelimb area (mouse). The effect of surround inhibition on dendritic computation and network activity was investigated, while groups of SPNs were activated. The SPN-induced surround inhibition in distal dendrites shunted effectively the corticostriatal EPSPs. The size of dendritic plateau-like potentials within the specific dendritic segment was both reduced and enhanced by inhibition, due to the hyperpolarized membrane potential of SPNs and the reversal-potential of GABA. On a population level, the competition between two subpopulations of SPNs was found to depend on the distance between the two units, the size of each unit, the activity level in each subgroup and the dopaminergic modulation of the dSPNs and iSPNs. The SPNs provided the dominating source of inhibition within the striatum, while the fast-spiking interneuron mainly had an initial effect due to short-term synaptic plasticity as shown in with ablation of the synaptic interaction.


Assuntos
Corpo Estriado , Neurônios , Animais , Camundongos , Gânglios da Base , Corpo Estriado/metabolismo , Interneurônios/fisiologia , Neostriado , Neurônios/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(17): 9554-9565, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32321828

RESUMO

The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, soma-dendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.


Assuntos
Simulação por Computador , Corpo Estriado/fisiologia , Fenômenos Eletrofisiológicos , Modelos Biológicos , Neurônios/fisiologia , Animais , Córtex Cerebral/fisiologia , Corpo Estriado/citologia , Dopamina/metabolismo , Camundongos , Receptores Dopaminérgicos/metabolismo , Tálamo/fisiologia
4.
Brain Behav Evol ; 96(4-6): 318-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34192700

RESUMO

The forebrain plays a critical role in a broad range of neural processes encompassing sensory integration and initiation/selection of behaviour. The forebrain functions through an interaction between different cortical areas, the thalamus, the basal ganglia with the dopamine system, and the habenulae. The ambition here is to compare the mammalian forebrain with that of the lamprey representing the oldest now living group of vertebrates, by a review of earlier studies. We show that the lamprey dorsal pallium has a motor, a somatosensory, and a visual area with retinotopic representation. The lamprey pallium was previously thought to be largely olfactory. There is also a detailed similarity between the lamprey and mammals with regard to other forebrain structures like the basal ganglia in which the general organisation, connectivity, transmitters and their receptors, neuropeptides, and expression of ion channels are virtually identical. These initially unexpected results allow for the possibility that many aspects of the basic design of the vertebrate forebrain had evolved before the lamprey diverged from the evolutionary line leading to mammals. Based on a detailed comparison between the mammalian forebrain and that of the lamprey and with due consideration of data from other vertebrate groups, we propose a compelling account of a pan-vertebrate schema for basic forebrain structures, suggesting a common ancestry of over half a billion years of vertebrate evolution.


Assuntos
Evolução Biológica , Lampreias , Animais , Mamíferos , Prosencéfalo , Vertebrados
5.
Proc Natl Acad Sci U S A ; 116(30): 15272-15281, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296565

RESUMO

As animals forage for food and water or evade predators, they must rapidly decide what visual features in the environment deserve attention. In vertebrates, this visuomotor computation is implemented within the neural circuits of the optic tectum (superior colliculus in mammals). However, the mechanisms by which tectum decides whether to approach or evade remain unclear, and also which neural mechanisms underlie this behavioral choice. To address this problem, we used an eye-brain-spinal cord preparation to evaluate how the lamprey responds to visual inputs with distinct stimulus-dependent motor patterns. Using ventral root activity as a behavioral readout, we classified 2 main types of fictive motor responses: (i) a unilateral burst response corresponding to orientation of the head toward slowly expanding or moving stimuli, particularly within the anterior visual field, and (ii) a unilateral or bilateral burst response triggering fictive avoidance in response to rapidly expanding looming stimuli or moving bars. A selective pharmacological blockade revealed that the brainstem-projecting neurons in the deep layer of the tectum in interaction with local inhibitory interneurons are responsible for selecting between these 2 visually triggered motor actions conveyed through downstream reticulospinal circuits. We suggest that these visual decision-making circuits had evolved in the common ancestor of vertebrates and have been conserved throughout vertebrate phylogeny.


Assuntos
Comportamento de Escolha/fisiologia , Reação de Fuga/fisiologia , Vias Neurais/fisiologia , Orientação Espacial/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Colículos Superiores/fisiologia , Animais , Mapeamento Encefálico , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Olho/anatomia & histologia , Interneurônios/citologia , Interneurônios/fisiologia , Lampreias/anatomia & histologia , Lampreias/fisiologia , Atividade Motora/fisiologia , Vias Neurais/anatomia & histologia , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/anatomia & histologia , Raízes Nervosas Espinhais/fisiologia , Colículos Superiores/anatomia & histologia
6.
J Neurophysiol ; 125(2): 693-698, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356910

RESUMO

In this tribute to Reggie Edgerton, I briefly review the spinal mechanisms that coordinate locomotion and the interaction between the different sensory mechanisms that help coordinate the locomotor movements and the central locomotor network. The step cycle has four distinct parts, the support phase, the lift off, the flexion phase, and, the most complex, the touch down, when the limb makes a smooth contact with ground again. Each of these phases is affected by different sensory mechanisms, which interact with the central network [central pattern generator (CPG)] generating the basic movements with its four components. Conversely, the CPG also gates the sensory reflex pathways, so that they are active only in a given phase of the step cycle, or even produces opposite effects in different parts of the step cycle. These different examples from mammals are most likely important also to consider for human locomotion and, in particular, in patients with spinal cord injury, partial or complete.


Assuntos
Medula Espinal/fisiologia , Caminhada , Animais , Geradores de Padrão Central/fisiologia , Retroalimentação Sensorial , Humanos , Medula Espinal/citologia
7.
Eur J Neurosci ; 53(7): 2135-2148, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32511809

RESUMO

The striatum is the main input stage of the basal ganglia receiving extrinsic input from cortex and thalamus. The striatal projection neurons (SPN) constitute 95% of the neurons in the striatum in mice while the remaining 5% are cholinergic and GABAergic interneurons. The cholinergic (ChIN) and low-threshold spiking interneurons (LTS) are spontaneously active and form a striatal subnetwork involved in salience detection and goal-directed learning. Activation of ChINs has been shown to inhibit LTS via muscarinic receptor type 4 (M4R) and LTS in turn can modulate ChINs via nitric oxide (NO) causing a prolonged depolarization. Thalamic input prefentially excites ChINs, whereas input from motor cortex favours LTS, but can also excite ChINs. This varying extrinsic input with intrinsic reciprocal, yet opposing, effects raises the possibility of a slow input-dependent modulatory subnetwork. Here, we simulate this subnetwork using multicompartmental neuron models that incorporate data regarding known ion channels and detailed morphological reconstructions. The modelled connections replicate the experimental data on muscarinic (M4R) and nitric oxide modulation onto LTS and ChIN, respectively, and capture their physiological interaction. Finally, we show that the cortical and thalamic inputs triggering the opposing modulation within the network induce periods of increased and decreased spiking activity in ChINs and LTS. This could provide different temporal windows for selective modulation by acetylcholine and nitric oxide, and the possibility of interaction with the wider striatal microcircuit.


Assuntos
Corpo Estriado , Interneurônios , Animais , Colinérgicos , Camundongos , Camundongos Transgênicos , Tálamo
8.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070932

RESUMO

The neuronal networks that generate locomotion are well understood in swimming animals such as the lamprey, zebrafish and tadpole. The networks controlling locomotion in tetrapods remain, however, still enigmatic with an intricate motor pattern required for the control of the entire limb during the support, lift off, and flexion phase, and most demandingly when the limb makes contact with ground again. It is clear that the inhibition that occurs between bursts in each step cycle is produced by V2b and V1 interneurons, and that a deletion of these interneurons leads to synchronous flexor-extensor bursting. The ability to generate rhythmic bursting is distributed over all segments comprising part of the central pattern generator network (CPG). It is unclear how the rhythmic bursting is generated; however, Shox2, V2a and HB9 interneurons do contribute. To deduce a possible organization of the locomotor CPG, simulations have been elaborated. The motor pattern has been simulated in considerable detail with a network composed of unit burst generators; one for each group of close synergistic muscle groups at each joint. This unit burst generator model can reproduce the complex burst pattern with a constant flexion phase and a shortened extensor phase as the speed increases. Moreover, the unit burst generator model is versatile and can generate both forward and backward locomotion.


Assuntos
Geradores de Padrão Central/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Redes Neurais de Computação , Medula Espinal/fisiologia , Animais , Gatos , Geradores de Padrão Central/citologia , Simulação por Computador , Extremidades/inervação , Extremidades/fisiologia , Humanos , Interneurônios/citologia , Lampreias/fisiologia , Larva/fisiologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Roedores/fisiologia , Medula Espinal/citologia , Peixe-Zebra/fisiologia
9.
Semin Cell Dev Biol ; 78: 103-106, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29107476

RESUMO

The medial and lateral habenulae are conserved throughout vertebrate evolution, and form an integrated part in the forebrain control of behavior together with the basal ganglia, the dopamine and serotonin systems and cortex. The lateral habenula plays a role in the control of dopamine activity in the context of aversive behavior and the converse, a reward situation. These circuits are important for a value-based evaluation of the success of prior actions. The medial habenula is involved in mediating escape and freezing behavior. These structures are reviewed with a focus on the lamprey, belonging to the oldest group of now living vertebrate, showing that most aspects of the habenular structure and function have been conserved throughout vertebrate phylogeny.


Assuntos
Comportamento Animal/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Lampreias/anatomia & histologia , Lampreias/fisiologia , Vias Neurais/fisiologia , Animais , Gânglios da Base/fisiologia , Evolução Biológica , Dopamina/metabolismo , Serotonina/metabolismo
10.
J Neurosci ; 38(35): 7713-7724, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30037834

RESUMO

CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively. Here, we investigate the functional properties of the ciliated somatostatin-/GABA-positive CSF-c neurons in the hypothalamus by performing whole-cell recordings in hypothalamic slices. Depolarizing current pulses readily evoked action potentials, but hypothalamic CSF-c neurons had no or a very low level of spontaneous activity at pH 7.4. They responded, however, with membrane potential depolarization and trains of action potentials to small deviations in pH in both the acidic and alkaline direction. Like in spinal CSF-c neurons, the acidic response in hypothalamic cells is mediated via ASIC3-like channels. In contrast, the alkaline response appears to depend on connexin hemichannels, not on PKD2L1 channels. We also show that hypothalamic CSF-c neurons respond to mechanical stimulation induced by fluid movements along the wall of the third ventricle, a response mediated via ASIC3-like channels. The hypothalamic CSF-c neurons extend their processes dorsally, ventrally, and laterally, but as yet, the effects exerted on hypothalamic circuits are unknown. With similar neurons being present in rodents, the pH- and mechanosensing ability of hypothalamic CSF-c neurons is most likely conserved throughout vertebrate phylogeny.SIGNIFICANCE STATEMENT CSF-contacting neurons are present in all vertebrates and are located mainly in the hypothalamic area and the spinal cord. Here, we report that the somatostatin-/GABA-expressing CSF-c neurons in the lamprey hypothalamus sense bidirectional deviations in the extracellular pH and do so via different molecular mechanisms. They also serve as mechanoreceptors. The hypothalamic CSF-c neurons have extensive axonal ramifications and may decrease the level of motor activity via release of somatostatin. In conclusion, hypothalamic somatostatin-/GABA-expressing CSF-c neurons, as well as their spinal counterpart, represent a novel homeostatic mechanism designed to sense any deviation from physiological pH and thus constitute a feedback regulatory system intrinsic to the CNS, possibly serving a protective role from damage caused by changes in pH.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Líquido Cefalorraquidiano/fisiologia , Concentração de Íons de Hidrogênio , Hipotálamo/citologia , Mecanorreceptores/fisiologia , Neurônios/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Potenciais de Ação , Animais , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , Feminino , Junções Comunicantes/fisiologia , Lampreias , Masculino , Movimento (Física) , Técnicas de Patch-Clamp , Estimulação Física , Somatostatina/análise , Estresse Mecânico , Terceiro Ventrículo , Ácido gama-Aminobutírico/análise
11.
Proc Natl Acad Sci U S A ; 112(15): E1956-65, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825743

RESUMO

The optic tectum (called superior colliculus in mammals) is critical for eye-head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex--yet phylogenetically conserved--sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution.


Assuntos
Interneurônios/fisiologia , Lampreias/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Algoritmos , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Imuno-Histoquímica , Interneurônios/citologia , Interneurônios/metabolismo , Lampreias/anatomia & histologia , Lampreias/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Neurológicos , Inibição Neural/fisiologia , Técnicas de Patch-Clamp , Retinaldeído/fisiologia , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vias Visuais/citologia , Vias Visuais/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(9): 3591-6, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550483

RESUMO

The neural control of movements in vertebrates is based on a set of modules, like the central pattern generator networks (CPGs) in the spinal cord coordinating locomotion. Sensory feedback is not required for the CPGs to generate the appropriate motor pattern and neither a detailed control from higher brain centers. Reticulospinal neurons in the brainstem activate the locomotor network, and the same neurons also convey signals from higher brain regions, such as turning/steering commands from the optic tectum (superior colliculus). A tonic increase in the background excitatory drive of the reticulospinal neurons would be sufficient to produce coordinated locomotor activity. However, in both vertebrates and invertebrates, descending systems are in addition phasically modulated because of feedback from the ongoing CPG activity. We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem-spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem-spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. The simulations also predict that, in contrast to reticulospinal neurons, tectal steering/turning command neurons should have minimal frequency adaptive properties, which has been confirmed experimentally.


Assuntos
Geradores de Padrão Central/metabolismo , Lampreias/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Neurônios Motores/metabolismo , Colículos Superiores/metabolismo , Animais , Simulação por Computador , Vias Eferentes/metabolismo , Orientação/fisiologia , Técnicas de Patch-Clamp
13.
Nat Rev Neurosci ; 12(5): 297-302, 2011 05.
Artigo em Inglês | MEDLINE | ID: mdl-21505517

RESUMO

As the global financial downturn continues, its impact on neuroscientists - both on an individual level and at the level of their research institute - becomes increasingly apparent. How is the economic crisis affecting neuroscience funding, career prospects, international collaborations and scientists' morale in different parts of the world? Nature Reviews Neuroscience gauged the opinions of a number of leading neuroscientists: the President of the Society for Neuroscience, the President Elect of the British Neuroscience Association, the former President of the Japan Neuroscience Society, the President of the Federation of European Neuroscience Societies and the Director of the US National Institute of Mental Health. Their responses provide interesting and important insights into the regional impact of the global financial downturn, with some causes for optimism for the future of neuroscience research.


Assuntos
Pesquisa Biomédica/economia , Neurociências/economia , Neurociências/tendências , Pesquisa Biomédica/tendências , Comportamento Cooperativo , Europa (Continente) , Humanos , Japão
14.
Proc Natl Acad Sci U S A ; 110(38): E3670-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003130

RESUMO

The basal ganglia are critical for selecting actions and evaluating their outcome. Although the circuitry for selection is well understood, how these nuclei evaluate the outcome of actions is unknown. Here, we show in lamprey that a separate evaluation circuit, which regulates the habenula-projecting globus pallidus (GPh) neurons, exists within the basal ganglia. The GPh neurons are glutamatergic and can drive the activity of the lateral habenula, which, in turn, provides an indirect inhibitory influence on midbrain dopamine neurons. We show that GPh neurons receive inhibitory input from the striosomal compartment of the striatum. The striosomal input can reduce the excitatory drive to the lateral habenula and, consequently, decrease the inhibition onto the dopaminergic system. Dopaminergic neurons, in turn, provide feedback that inhibits the GPh. In addition, GPh neurons receive direct projections from the pallium (cortex in mammals), which can increase the GPh activity to drive the lateral habenula to increase the inhibition of the neuromodulatory systems. This circuitry, thus, differs markedly from the "direct" and "indirect" pathways that regulate the pallidal (e.g., globus pallidus) output nuclei involved in the control of motion. Our results show that a distinct reward-evaluation circuit exists within the basal ganglia, in parallel to the direct and indirect pathways, which select actions. Our results suggest that these circuits are part of the fundamental blueprint that all vertebrates use to select actions and evaluate their outcome.


Assuntos
Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Habenula/fisiologia , Lampreias/fisiologia , Atividade Motora/fisiologia , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Microscopia de Fluorescência , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Recompensa
15.
Proc Natl Acad Sci U S A ; 109(3): E164-73, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22203996

RESUMO

The medial (MHb) and lateral (LHb) habenulae are a small group of nuclei that regulate the activity of monoaminergic neurons. Disruptions to these nuclei lead to deficits in a range of cognitive and motor functions from sleep to decision making. Interestingly, the habenular nuclei are present in all vertebrates, suggesting that they provide a common neural mechanism to influence these diverse functions. To unravel conserved habenula circuitry and approach an understanding of their basic function, we investigated the organization of these nuclei in the lamprey, one of the phylogenetically oldest vertebrates. Based on connectivity and molecular expression, we show that the MHb and LHb circuitry is conserved in the lamprey. As in mammals, separate populations of neurons in the LHb homolog project directly or indirectly to dopamine and serotonin neurons through a nucleus homologous to the GABAergic rostromedial mesopontine tegmental nucleus and directly to histamine neurons. The pallidal and hypothalamic inputs to the LHb homolog are also conserved. In contrast to other species, the habenula projecting pallidal nucleus is topographically distinct from the dorsal pallidum, the homolog of the globus pallidus interna. The efferents of the MHb homolog selectively target the interpeduncular nucleus. The MHb afferents arise from sensory (medial olfactory bulb, parapineal, and pretectum) and not limbic areas, as they do in mammals; consequently, the "context" in which this circuitry is recruited may have changed during evolution. Our results indicate that the habenular nuclei provide a common vertebrate circuitry to adapt behavior in response to rewards, stress, and other motivating factors.


Assuntos
5-Hidroxitriptofano/metabolismo , Evolução Biológica , Dopamina/metabolismo , Habenula/anatomia & histologia , Habenula/fisiologia , Rede Nervosa/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiologia , Hipotálamo/fisiologia , Lampreias/anatomia & histologia , Mamíferos/fisiologia , Neostriado/fisiologia , Neurônios Aferentes/fisiologia , Órgãos dos Sentidos/fisiologia , Serotonina/metabolismo
16.
J Neurosci ; 33(21): 9104-12, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699521

RESUMO

A brainstem region, the paratrigeminal respiratory group (pTRG), has been suggested to play a crucial role in the respiratory rhythm generation in lampreys. However, a detailed characterization of the pTRG region is lacking. The present study performed on isolated brainstem preparations of adult lampreys provides a more precise localization of the pTRG region with regard to both connectivity and neurochemical markers. pTRG neurons projecting to the vagal motoneuronal pool were identified in a restricted area of the rostral rhombencephalon at the level of the isthmic Müller cell I1 close to sulcus limitans of His. Unilateral microinjections of lidocaine, muscimol, or glutamate antagonists into the pTRG inhibited completely the bilateral respiratory activity. In contrast, microinjections of glutamate agonists enhanced the respiratory activity, suggesting that this region is critical for the respiratory pattern generation. The retrogradely labeled pTRG neurons are glutamatergic and surrounded by terminals with intense substance P immunoreactivity. Cholinergic neurons were seen close to, and intermingled with, pTRG neurons. In addition, α-bungarotoxin binding sites (indicating nicotinic receptors) were found throughout the pTRG area and particularly on the soma of these neurons. During apnea, induced by blockade of ionotropic glutamate receptors within the same region, microinjections of 1 µm substance P or 1 mm nicotine into the pTRG restored rhythmic respiratory activity. The results emphasize the close similarities between the pTRG and the mammalian pre-Bötzinger complex as a crucial site for respiratory rhythmogenesis. We conclude that some basic features of the excitatory neurons proposed to generate respiratory rhythms are conserved throughout evolution.


Assuntos
Vias Neurais/fisiologia , Neurônios/fisiologia , Centro Respiratório/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Lateralidade Funcional , Técnicas In Vitro , Lampreias , Masculino , Vias Neurais/anatomia & histologia , Neurônios/efeitos dos fármacos , Centro Respiratório/metabolismo , Substância P/metabolismo , Substância P/farmacologia , Nervo Vago/fisiologia
17.
J Neurosci ; 33(18): 8045-54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637194

RESUMO

The functions of the basal ganglia are critically dependent on dopamine. In mammals, dopamine differentially modulates the excitability of the direct and indirect striatal projection neurons, and these populations selectively express dopamine D1 and D2 receptors, respectively. Although the detailed organization of the basal ganglia is conserved throughout the vertebrate phylum, it was unknown whether the differential dopamine modulation of the direct and indirect pathways is present in non-mammalian species. We aim here to determine whether the receptor expression and opposing dopaminergic modulation of the direct and indirect pathways is present in one of the phylogenetically oldest vertebrates, the river lamprey. Using in situ hybridization and patch-clamp recordings, we show that D1 receptors are almost exclusively expressed in the striatal neurons projecting directly to the homolog of the substantia nigra pars reticulata. In addition, the majority of striatal neurons projecting to the homolog of the globus pallidus interna/globus pallidus externa express D1 or D2 receptors. As in mammals, application of dopamine receptor agonists differentially modulates the excitability of these neurons, increasing the excitability of the D1-expressing neurons and decreasing the excitability of D2-expressing neurons. Our results suggest that the segregated expression of the D1 and D2 receptors in the direct and indirect striatal projection neurons has been conserved across the vertebrate phylum. Because dopamine receptor agonists differentially modulate these pathways, increasing the excitability of the direct pathway and decreasing the excitability of the indirect pathway, this organization may be conserved as a mechanism that biases the networks toward action selection.


Assuntos
Corpo Estriado/citologia , Dopamina/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Aporfinas/farmacologia , Benzazepinas/farmacologia , Biofísica , Biotina/análogos & derivados , Biotina/metabolismo , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Técnicas In Vitro , Lampreias , Masculino , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Estatísticas não Paramétricas
18.
J Physiol ; 592(8): 1823-38, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24492840

RESUMO

We have previously shown that GABA and glycine modulate respiratory activity in the in vitro brainstem preparations of the lamprey and that blockade of GABAA and glycine receptors restores the respiratory rhythm during apnoea caused by blockade of ionotropic glutamate receptors. However, the neural substrates involved in these effects are unknown. To address this issue, the role of GABAA, GABAB and glycine receptors within the paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, and the vagal motoneuron region was investigated both during apnoea induced by blockade of glutamatergic transmission and under basal conditions through microinjections of specific antagonists. The removal of GABAergic, but not glycinergic transmission within the pTRG, causes the resumption of rhythmic respiratory activity during apnoea, and reveals the presence of a modulatory control of the pTRG under basal conditions. A blockade of GABAA and glycine receptors within the vagal region strongly increases the respiratory frequency through disinhibition of neurons projecting to the pTRG from the vagal region. These neurons were retrogradely labelled (neurobiotin) from the pTRG. Intense GABA immunoreactivity is observed both within the pTRG and the vagal area, which corroborates present findings. The results confirm the pTRG as a primary site of respiratory rhythm generation, and suggest that inhibition modulates the activity of rhythm-generating neurons, without any direct role in burst formation and termination mechanisms.


Assuntos
Geradores de Padrão Central/fisiologia , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Respiração , Potenciais de Ação , Animais , Geradores de Padrão Central/citologia , Geradores de Padrão Central/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Lampreias , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Receptores de GABA/genética , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/genética , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
19.
J Neurophysiol ; 112(1): 30-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24740857

RESUMO

The lamprey central nervous system has been used extensively as a model system for investigating the networks underlying vertebrate motor behavior. The locomotor networks can be activated by application of glutamate agonists, such as N-methyl-D-aspartic acid (NMDA), to the isolated spinal cord preparation. Many spinal neurons are capable of generating pacemaker-like membrane potential oscillations upon activation of NMDA receptors. These oscillations rely on the voltage-dependent properties of NMDA receptors in interaction with voltage-dependent potassium and calcium-dependent potassium (K(Ca)) channels, as well as low voltage-activated calcium channels. Upon membrane depolarization, influx of calcium will activate K(Ca) channels, which in turn, will contribute to repolarization and termination of the depolarized phase. The appearance of the NMDA-induced oscillations varies markedly between spinal cord preparations; they may either have a pronounced, depolarized plateau phase or be characterized by a short-lasting depolarization lasting approximately 200-300 ms without a plateau. Both types of oscillations increase in frequency with increased concentrations of NMDA. Here, we characterize these two types of membrane potential oscillations and show that they depend on the level of endogenous release of 5-HT in the spinal cord preparations. In the lamprey, 5-HT acts to block voltage-dependent calcium channels and will thereby modulate the activity of K(Ca) channels. When 5-HT antagonists were administered, the plateau-like oscillations were converted to the second type of oscillations lacking a plateau phase. Conversely, plateau-like oscillations can be induced or prolonged by 5-HT agonists. These properties are most likely of significance for the modulatory action of 5-HT on the spinal networks for locomotion.


Assuntos
Potenciais da Membrana , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Canais de Cálcio/metabolismo , Lampreias , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Antagonistas da Serotonina/farmacologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA