Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 24(8): e57499, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401859

RESUMO

Abnormal tau protein impairs mitochondrial function, including transport, dynamics, and bioenergetics. Mitochondria interact with the endoplasmic reticulum (ER) via mitochondria-associated ER membranes (MAMs), which coordinate and modulate many cellular functions, including mitochondrial cholesterol metabolism. Here, we show that abnormal tau loosens the association between the ER and mitochondria in vivo and in vitro. Especially, ER-mitochondria interactions via vesicle-associated membrane protein-associated protein (VAPB)-protein tyrosine phosphatase-interacting protein 51 (PTPIP51) are decreased in the presence of abnormal tau. Disruption of MAMs in cells with abnormal tau alters the levels of mitochondrial cholesterol and pregnenolone, indicating that conversion of cholesterol into pregnenolone is impaired. Opposite effects are observed in the absence of tau. Besides, targeted metabolomics reveals overall alterations in cholesterol-related metabolites by tau. The inhibition of GSK3ß decreases abnormal tau hyperphosphorylation and increases VAPB-PTPIP51 interactions, restoring mitochondrial cholesterol and pregnenolone levels. This study is the first to highlight a link between tau-induced impairments in the ER-mitochondria interaction and cholesterol metabolism.


Assuntos
Mitocôndrias , Proteínas tau , Proteínas tau/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/farmacologia , Colesterol/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982371

RESUMO

Abnormal tau build-up is a hallmark of Alzheimer's disease (AD) and more than 20 other serious neurodegenerative diseases. Mitochondria are paramount organelles playing a predominant role in cellular bioenergetics, namely by providing the main source of cellular energy via adenosine triphosphate generation. Abnormal tau impairs almost every aspect of mitochondrial function, from mitochondrial respiration to mitophagy. The aim of our study was to investigate the effects of spermidine, a polyamine which exerts neuroprotective effects, on mitochondrial function in a cellular model of tauopathy. Recent evidence identified autophagy as the main mechanism of action of spermidine on life-span prolongation and neuroprotection, but the effects of spermidine on abnormal tau-induced mitochondrial dysfunction have not yet been investigated. We used SH-SY5Y cells stably expressing a mutant form of human tau protein (P301L tau mutation) or cells expressing the empty vector (control cells). We showed that spermidine improved mitochondrial respiration, mitochondrial membrane potential as well as adenosine triphosphate (ATP) production in both control and P301L tau-expressing cells. We also showed that spermidine decreased the level of free radicals, increased autophagy and restored P301L tau-induced impairments in mitophagy. Overall, our findings suggest that spermidine supplementation might represent an attractive therapeutic approach to prevent/counteract tau-related mitochondrial impairments.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Proteínas tau/metabolismo , Mitofagia , Espermidina/farmacologia , Doença de Alzheimer/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
3.
Cell Mol Life Sci ; 76(7): 1419-1431, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30683981

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting more than 47.5 million people worldwide. Metabolic impairments are common hallmarks of AD, and amyloid-ß (Aß) peptide and hyperphosphorylated tau protein-the two foremost histopathological signs of AD-have been implicated in mitochondrial dysfunction. Many neurodegenerative disorders, including AD, show excessive amounts of mis-/unfolded proteins leading to an activation of the unfolded protein response (UPR). In the present study, we aimed to characterize the link between ER stress and bioenergetics defects under normal condition (human SH-SY5Y neuroblastoma cells: control cells) or under pathological AD condition [SH-SY5Y cells overexpressing either the human amyloid precursor protein (APP) or mutant tau (P301L)]. More specifically, we measured UPR gene expression, cell viability, and bioenergetics parameters, such as ATP production and mitochondrial membrane potential (MMP) in basal condition and after an induced ER stress by thapsigargin. We detected highly activated UPR and dysregulated bioenergetics in basal condition in both AD cellular models. Strikingly, acute-induced ER stress increased the activity of the UPR in both AD cellular models, leading to up-regulation of apoptotic pathways, and further dysregulated mitochondrial function.


Assuntos
Doença de Alzheimer/patologia , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882957

RESUMO

Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer's disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.


Assuntos
Mitocôndrias/patologia , Mitofagia , Doenças Neurodegenerativas/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosforilação , Tauopatias/metabolismo
5.
J Neurochem ; 143(4): 418-431, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397282

RESUMO

Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid".


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Radicais Livres/metabolismo , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 631-642, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27979708

RESUMO

Allopregnanolone (AP) is supposed to exert beneficial actions including anxiolysis, analgesia, neurogenesis and neuroprotection. However, although mitochondrial dysfunctions are evidenced in neurodegenerative diseases, AP actions against neurodegeneration-induced mitochondrial deficits have never been investigated. Also, the therapeutic exploitation of AP is limited by its difficulty to pass the liver and its rapid clearance after sulfation or glucuronidation of its 3-hydroxyl group. Therefore, the characterization of novel potent neuroprotective analogs of AP may be of great interest. Thus, we synthesized a set of AP analogs (ANS) and investigated their ability to counteract APP-overexpression-evoked bioenergetic deficits and to protect against oxidative stress-induced death of control and APP-transfected SH-SY5Y cells known as a reliable cellular model of Alzheimer's disease (AD). Especially, we examined whether ANS were more efficient than AP to reduce mitochondrial dysfunctions or bioenergetic decrease leading to neuronal cell death. Our results showed that the ANS BR 297 exhibits notable advantages over AP with regards to both protection of mitochondrial functions and reduction of oxidative stress. Indeed, under physiological conditions, BR 297 does not promote cell proliferation but efficiently ameliorates the bioenergetics by increasing cellular ATP level and mitochondrial respiration. Under oxidative stress situations, BR 297 treatment, which decreases ROS levels, improves mitochondrial respiration and cell survival, appears more potent than AP to protect control and APP-transfected cells against H2O2-induced death. Our findings lend further support to the neuroprotective effects of BR 297 emphasizing this analog as a promising therapeutic tool to counteract age- and AD-related bioenergetic deficits.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pregnanolona/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Pregnanolona/análogos & derivados , Regulação para Cima/efeitos dos fármacos
7.
Cell Mol Life Sci ; 73(1): 201-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26198711

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease marked by a progressive cognitive decline. Metabolic impairments are common hallmarks of AD, and amyloid-ß (Aß) peptide and hyperphosphorylated tau protein--the two foremost histopathological signs of AD--have been implicated in mitochondrial dysfunction. Neurosteroids have recently shown promise in alleviating cognitive and neuronal sequelae of AD. The present study evaluates the impact of neurosteroids belonging to the sex hormone family (progesterone, estradiol, estrone, testosterone, 3α-androstanediol) on mitochondrial dysfunction in cellular models of AD: human neuroblastoma cells (SH-SY5Y) stably transfected with constructs encoding (1) the human amyloid precursor protein (APP) resulting in overexpression of APP and Aß, (2) wild-type tau (wtTau), and (3) mutant tau (P301L), that induces abnormal tau hyperphosphorylation. We show that while APP and P301L cells both display a drop in ATP levels, they present distinct mitochondrial impairments with regard to their bioenergetic profiles. The P301L cells presented a decreased maximal respiration and spare respiratory capacity, while APP cells exhibited, in addition, a decrease in basal respiration, ATP turnover, and glycolytic reserve. All neurosteroids showed beneficial effects on ATP production and mitochondrial membrane potential in APP/Aß overexpressing cells while only progesterone and estradiol increased ATP levels in mutant tau cells. Of note, testosterone was more efficient in alleviating Aß-induced mitochondrial deficits, while progesterone and estrogen were the most effective neurosteroids in our model of AD-related tauopathy. Our findings lend further support to the neuroprotective effects of neurosteroids in AD and may open new avenues for the development of gender-specific therapeutic approaches in AD.


Assuntos
Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Neurotransmissores/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular , Metabolismo Energético , Humanos , Potencial da Membrana Mitocondrial , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Mutação Puntual , Regulação para Cima , Proteínas tau/genética
8.
Biogerontology ; 17(2): 281-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26468143

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that represents the most common form of dementia among the elderly. Despite the fact that AD was studied for decades, the underlying mechanisms that trigger this neuropathology remain unresolved. Since the onset of cognitive deficits occurs generally within the 6th decade of life, except in rare familial case, advancing age is the greatest known risk factor for AD. To unravel the pathogenesis of the disease, numerous studies use cellular and animal models based on genetic mutations found in rare early onset familial AD (FAD) cases that represent less than 1 % of AD patients. However, the underlying process that leads to FAD appears to be distinct from that which results in late-onset AD. As a genetic disorder, FAD clearly is a consequence of malfunctioning/mutated genes, while late-onset AD is more likely due to a gradual accumulation of age-related malfunction. Normal aging and AD are both marked by defects in brain metabolism and increased oxidative stress, albeit to varying degrees. Mitochondria are involved in these two phenomena by controlling cellular bioenergetics and redox homeostasis. In the present review, we compare the common features observed in both brain aging and AD, placing mitochondrial in the center of pathological events that separate normal and pathological aging. We emphasize a bioenergetic model for AD including the inverse Warburg hypothesis which postulates that AD is a consequence of mitochondrial deregulation leading to metabolic reprogramming as an initial attempt to maintain neuronal integrity. After the failure of this compensatory mechanism, bioenergetic deficits may lead to neuronal death and dementia. Thus, mitochondrial dysfunction may represent the missing link between aging and sporadic AD, and represent attractive targets against neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/genética , Animais , Humanos , Mutação , Estresse Oxidativo
9.
Biochim Biophys Acta ; 1842(8): 1258-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24051203

RESUMO

The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-ß, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Fosforilação , Transporte Proteico
10.
Biochim Biophys Acta ; 1842(12 Pt A): 2427-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281013

RESUMO

The brain has high energy requirements to maintain neuronal activity. Consequently impaired mitochondrial function will lead to disease. Normal aging is associated with several alterations in neurosteroid production and secretion. Decreases in neurosteroid levels might contribute to brain aging and loss of important nervous functions, such as memory. Up to now, extensive studies only focused on estradiol as a promising neurosteroid compound that is able to ameliorate cellular bioenergetics, while the effects of other steroids on brain mitochondria are poorly understood or not investigated at all. Thus, we aimed to characterize the bioenergetic modulating profile of a panel of seven structurally diverse neurosteroids (progesterone, estradiol, estrone, testosterone, 3α-androstanediol, DHEA and allopregnanolone), known to be involved in brain function regulation. Of note, most of the steroids tested were able to improve bioenergetic activity in neuronal cells by increasing ATP levels, mitochondrial membrane potential and basal mitochondrial respiration. In parallel, they modulated redox homeostasis by increasing antioxidant activity, probably as a compensatory mechanism to a slight enhancement of ROS which might result from the rise in oxygen consumption. Thereby, neurosteroids appeared to act via their corresponding receptors and exhibited specific bioenergetic profiles. Taken together, our results indicate that the ability to boost mitochondria is not unique to estradiol, but seems to be a rather common mechanism of different steroids in the brain. Thus, neurosteroids may act upon neuronal bioenergetics in a delicate balance and an age-related steroid disturbance might be involved in mitochondrial dysfunction underlying neurodegenerative disorders.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Androstano-3,17-diol/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desidroepiandrosterona/farmacologia , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Estrona/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Consumo de Oxigênio , Pregnanolona/farmacologia , Progesterona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Testosterona/farmacologia
11.
Biochimie ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38280505

RESUMO

Mitochondrial dysfunction has been widely implicated in the pathogenesis of Alzheimer's disease (AD), with accumulation of damaged and dysfunctional mitochondria occurring early in the disease. Mitophagy, which governs mitochondrial turnover and quality control, is impaired in the AD brain, and strategies aimed at enhancing mitophagy have been identified as promising therapeutic targets. The translocator protein (TSPO) is an outer mitochondrial membrane protein that is upregulated in AD, and ligands targeting TSPO have been shown to exert neuroprotective effects in mouse models of AD. However, whether TSPO ligands modulate mitophagy in AD has not been explored. Here, we provide evidence that the TSPO-specific ligands Ro5-4864 and XBD173 attenuate mitophagy deficits and mitochondrial fragmentation in a cellular model of AD overexpressing the human amyloid precursor protein (APP). Ro5-4864 and XBD173 appear to enhance mitophagy via modulation of the autophagic cargo receptor P62/SQSTM1, in the absence of an effect on PARK2, PINK1, or LC3 level. Taken together, these findings indicate that TSPO ligands may be promising therapeutic agents for ameliorating mitophagy deficits in AD.

12.
Cells ; 12(10)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37408218

RESUMO

Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Mitocôndrias/metabolismo , Metabolismo Energético
13.
Front Mol Neurosci ; 16: 1287510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235149

RESUMO

Neuron-to-neuron transmission of aggregation-prone, misfolded proteins may potentially explain the spatiotemporal accumulation of pathological lesions in the brains of patients with neurodegenerative protein-misfolding diseases (PMDs). However, little is known about protein transmission from the central nervous system to the periphery, or how this propagation contributes to PMD pathology. To deepen our understanding of these processes, we established two functional neuromuscular systems derived from human iPSCs. One was suitable for long-term high-throughput live-cell imaging and the other was adapted to a microfluidic system assuring that connectivity between motor neurons and muscle cells was restricted to the neuromuscular junction. We show that the Huntington's disease (HD)-associated mutant HTT exon 1 protein (mHTTEx1) is transmitted from neurons to muscle cells across the human neuromuscular junction. We found that transmission is an active and dynamic process that starts before aggregate formation and is regulated by synaptic activity. We further found that transmitted mHTTEx1 causes HD-relevant pathology at both molecular and functional levels in human muscle cells, even in the presence of the ubiquitous expression of mHTTEx1. In conclusion, we have uncovered a causal link between mHTTEx1 synaptic transmission and HD pathology, highlighting the therapeutic potential of blocking toxic protein transmission in PMDs.

14.
Oxid Med Cell Longev ; 2022: 5647599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602107

RESUMO

Background: Sustained stress with the overproduction of corticosteroids has been shown to increase reactive oxygen species (ROS) leading to an oxidative stress state. Mitochondria are the main generators of ROS and are directly and detrimentally affected by their overproduction. Neurons depend almost solely on ATP produced by mitochondria in order to satisfy their energy needs and to form synapses, while stress has been proven to alter synaptic plasticity. Emerging evidence underpins that Rhodiola rosea, an adaptogenic plant rich in polyphenols, exerts antioxidant, antistress, and neuroprotective effects. Methods: In this study, the effect of Rhodiola rosea extract (RRE) WS®1375 on neuronal ROS regulation, bioenergetics, and neurite outgrowth, as well as its potential modulatory effect on the brain derived neurotrophic factor (BDNF) pathway, was evaluated in the human neuroblastoma SH-SY5Y and the murine hippocampal HT22 cell lines. Stress was induced using the corticosteroid dexamethasone. Results: RRE increased bioenergetics as well as cell viability and scavenged ROS with a similar efficacy in both cells lines and counteracted the respective corticosteroid-induced dysregulation. The effect of RRE, both under dexamethasone-stress and under normal conditions, resulted in biphasic U-shape and inverted U-shape dose response curves, a characteristic feature of adaptogenic plant extracts. Additionally, RRE treatment promoted neurite outgrowth and induced an increase in BDNF levels. Conclusion: These findings indicate that RRE may constitute a candidate for the prevention of stress-induced pathophysiological processes as well as oxidative stress. Therefore, it could be employed against stress-associated mental disorders potentially leading to the development of a condition-specific supplementation.


Assuntos
Rhodiola , Animais , Fator Neurotrófico Derivado do Encéfalo , Dexametasona , Humanos , Camundongos , Crescimento Neuronal , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio
15.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429030

RESUMO

Intercellular mitochondria transfer is a novel form of cell signalling in which whole mitochondria are transferred between cells in order to enhance cellular functions or aid in the degradation of dysfunctional mitochondria. Recent studies have observed intercellular mitochondria transfer between glia and neurons in the brain, and mitochondrial transfer has emerged as a key neuroprotective mechanism in a range of neurological conditions. In particular, artificial mitochondria transfer has sparked widespread interest as a potential therapeutic strategy for brain disorders. In this review, we discuss the mechanisms and effects of intercellular mitochondria transfer in the brain. The role of mitochondrial transfer in neurological conditions, including neurodegenerative disease, brain injury, and neurodevelopmental disorders, is discussed as well as therapeutic strategies targeting mitochondria transfer in the brain.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo
16.
Cell Rep ; 40(13): 111433, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170830

RESUMO

Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aß, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.


Assuntos
Doença de Alzheimer , Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Glucose , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , alfa-Sinucleína/metabolismo
17.
Sci Adv ; 8(9): eabl9051, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235349

RESUMO

The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.


Assuntos
Senilidade Prematura , Envelhecimento/genética , Envelhecimento/metabolismo , Senilidade Prematura/genética , Animais , Longevidade , Mamíferos/genética , Camundongos , Espécies Reativas de Oxigênio , Telômero
18.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685510

RESUMO

The brain is the most energy-consuming organ of the body and impairments in brain energy metabolism will affect neuronal functionality and viability. Brain aging is marked by defects in energetic metabolism. Abnormal tau protein is a hallmark of tauopathies, including Alzheimer's disease (AD). Pathological tau was shown to induce bioenergetic impairments by affecting mitochondrial function. Although it is now clear that mutations in the tau-coding gene lead to tau pathology, the causes of abnormal tau phosphorylation and aggregation in non-familial tauopathies, such as sporadic AD, remain elusive. Strikingly, both tau pathology and brain hypometabolism correlate with cognitive impairments in AD. The aim of this review is to discuss the link between age-related decrease in brain metabolism and tau pathology. In particular, the following points will be discussed: (i) the common bioenergetic features observed during brain aging and tauopathies; (ii) how age-related bioenergetic defects affect tau pathology; (iii) the influence of lifestyle factors known to modulate brain bioenergetics on tau pathology. The findings compiled here suggest that age-related bioenergetic defects may trigger abnormal tau phosphorylation/aggregation and cognitive impairments after passing a pathological threshold. Understanding the effects of aging on brain metabolism may therefore help to identify disease-modifying strategies against tau-induced neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/genética , Proteínas tau/metabolismo , Disfunção Cognitiva/metabolismo , Metabolismo Energético/fisiologia , Humanos , Neurônios/metabolismo , Tauopatias/metabolismo
19.
Trends Endocrinol Metab ; 32(12): 963-979, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34654630

RESUMO

Studies on the sporadic form of Alzheimer's disease (AD) have revealed three classes of risk factor: age, genetics, and sex. These risk factors point to a metabolic dysregulation as the origin of AD. Adaptive alterations in cerebral metabolism are the rationale for the Metabolic Reprogramming (MR) Theory of the origin of AD. The theory contends that the progression toward AD involves three adaptive events: a hypermetabolic phase, a prolonged prodromal phase, and a metabolic collapse. This article exploits the MR Theory to elucidate the effect of hormonal changes on the origin and progression of AD in women. The theory invokes bioenergetic signatures of the menopausal transition to propose sex-specific diagnostic program and therapeutic strategies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Metabolismo Energético , Feminino , Humanos , Masculino , Menopausa , Caracteres Sexuais
20.
Cells ; 10(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34831079

RESUMO

Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.


Assuntos
Estresse do Retículo Endoplasmático , Inativação Gênica , Fígado/metabolismo , Fígado/patologia , Biossíntese de Proteínas , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas/genética , Proteostase , Sirtuína 1/metabolismo , Grânulos de Estresse/metabolismo , Resposta a Proteínas não Dobradas/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA