Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Acta Neuropathol ; 147(1): 65, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557897

RESUMO

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patologia , Células Mieloides/patologia , Microglia/patologia , Peptídeos beta-Amiloides/metabolismo
2.
J Biol Chem ; 296: 100218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839686

RESUMO

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer's disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface. Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that noncanonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 were required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


Assuntos
Membrana Celular/metabolismo , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Receptores Imunológicos/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Benzimidazóis/farmacologia , Benzotiazóis/farmacologia , Membrana Celular/efeitos dos fármacos , Colchicina/farmacologia , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Interferon gama/farmacologia , Interleucinas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Nitrilas/farmacologia , Cultura Primária de Células , Piridonas/farmacologia , Pirimidinonas/farmacologia , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Células THP-1 , Fator de Crescimento Transformador beta/farmacologia , Zearalenona/análogos & derivados , Zearalenona/farmacologia
3.
J Neurochem ; 136 Suppl 1: 18-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26806371

RESUMO

Seventy-five percent of all traumatic brain injuries are mild and do not cause readily visible abnormalities on routine medical imaging making it difficult to predict which individuals will develop unwanted clinical sequelae. Microglia are brain-resident macrophages and early responders to brain insults. Their activation is associated with changes in morphology or expression of phenotypic markers including P2Y12 and major histocompatibility complex class II. Using a murine model of unrestrained mild closed head injury (mCHI), we used microglia as reporters of acute brain injury at sites of impact versus sites experiencing rotational stress 24 h post-mCHI. Consistent with mild injury, a modest 20% reduction in P2Y12 expression was detected by quantitative real-time PCR (qPCR) analysis but only in the impacted region of the cortex. Furthermore, neither an influx of blood-derived immune cells nor changes in microglial expression of CD45, TREM1, TREM2, major histocompatibility complex class II or CD40 were detected. Using magnetic resonance imaging (MRI), small reductions in T2 weighted values were observed but only near the area of impact and without overt tissue damage (blood deposition, edema). Microglial morphology was quantified without cryosectioning artifacts using ScaleA(2) clarified brains from CX3CR1-green fluorescence protein (GFP) mice. The cortex rostral to the mCHI impact site receives greater rotational stress but neither MRI nor molecular markers of microglial activation showed significant changes from shams in this region. However, microglia in this rostral region did display signs of morphologic activation equivalent to that observed in severe CHI. Thus, mCHI-triggered rotational stress is sufficient to cause injuries undetectable by routine MRI that could result in altered microglial surveillance of brain homeostasis. Acute changes in microglial morphology reveal brain responses to unrestrained mild traumatic brain injury In areas subjected to rotational stress distant from impact site In the absence of detectable changes in standard molecular indicators of brain damage, inflammation or microglial activation. That might result in decreased surveillance of brain function and increased susceptibility to subsequent brain insults.


Assuntos
Modelos Animais de Doenças , Traumatismos Cranianos Fechados/patologia , Imageamento por Ressonância Magnética/métodos , Microglia/patologia , Animais , Traumatismos Cranianos Fechados/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microscopia Confocal/métodos
4.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39463930

RESUMO

This study examined dark microglia-a state linked to central nervous system pathology and neurodegeneration-during postnatal development in the mouse ventral hippocampus, finding that dark microglia interact with blood vessels and synapses and perform trogocytosis of pre-synaptic axon terminals. Furthermore, we found that dark microglia in development notably expressed C-type lectin domain family 7 member A (CLEC7a), lipoprotein lipase (LPL) and triggering receptor expressed on myeloid cells 2 (TREM2) and required TREM2, differently from other microglia, suggesting a link between their role in remodeling during development and central nervous system pathology. Together, these results point towards a previously under-appreciated role for dark microglia in synaptic pruning and plasticity during normal postnatal development.

5.
J Neurochem ; 126(5): 662-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23586526

RESUMO

Spreading depression (SD), the most likely cause of migraine aura and perhaps migraine, occurs with increased oxidative stress (OS). SD increases reactive oxygen species (ROS), and ROS, in turn, can signal to increase neuronal excitability,which includes increased SD susceptibility. SD also elevates tumor necrosis factor-α (TNF-α), which increases neuronal excitability. Accordingly, we probed for the cellular origin of OS from SD and its relationship to TNF-α, which might promote SD, using rat hippocampal slice cultures. We observed significantly increased OS from SD in astrocytes and microglia but not in neurons or oligodendrocytes. Since insulin-like growth factor-1 (IGF-1) mitigates OS from SD, we determined the cell types responsible for this effect. We found that IGF-1 significantly decreased microglial but not astrocytic OS from SD. We also show that IGF-1 abrogated the SD-induced TNF-α increase. Furthermore, TNF-α application increased microglial but not astrocytic OS, an effect abrogated by IGF-1. Next,we showed that SD increased SD susceptibility, and does so via TNF-α. This work suggests that microglia promote SD via increased and interrelated ROS and TNF-α signaling. Thus, IGF-1 mitigation of microglial ROS and TNF-α responses maybe targets for novel therapeutics development to prevent SD, and perhaps migraine.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Fenômenos Eletrofisiológicos , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Confocal , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Gravidez , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fixação de Tecidos , Fator de Necrose Tumoral alfa/fisiologia
6.
J Neurochem ; 122(1): 221-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22524542

RESUMO

Spreading depression (SD), the likely cause of migraine aura and perhaps migraine, is triggered by widespread and unfettered neuronal hyperexcitability. Migraine and the initiating hyperexcitability of seizure, which involve oxidative stress (OS), are likely interrelated. Environmental enrichment (EE) decreases seizure and can reduce migraine. EE's well-characterized neuroprotective effect involves insulin-like growth factor-1 (IGF-1). Accordingly, we asked if IGF-1 could mitigate the hyperexcitability that initiates SD using rat hippocampal slice cultures. We demonstrate that IGF-1 significantly decreased SD susceptibility and related OS. We mimicked OS of SD and observed that IGF-1 abolished hyperexcitability from OS. Application of an antioxidant significantly decreased SD susceptibility and co-administration of an antioxidant with IGF-1 produced no additive effect, whereas an oxidizer significantly increased SD, and this effect was abrogated by IGF-1. Moreover, IGF-1 significantly decreased baseline OS, despite seemingly paradoxically increasing CA3 bursting. These results suggest that IGF-1 increased endogenous antioxidants to levels sufficient to buffer against the OS of SD. Insulin similarly mitigated SD susceptibility, but required a far greater dose. Since brain IGF-1 increases with EE, and, like insulin, independently functions as an EE mimetic, we suggest that EE mimetics are a novel source of therapeutics for SD, and by extension, migraine.


Assuntos
Fenômenos Biofísicos/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/farmacologia , Insulina/farmacologia , Masculino , Técnicas de Cultura de Órgãos , Oxidantes/farmacologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
7.
Sci Rep ; 11(1): 2879, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536571

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease with poor prognosis. New options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR method to interrogate the human genome for modulation of in vitro correlates of AD features, and used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria. This work revealed (I) a network of tau aggregation modulators including the NF-κB pathway and inflammatory signaling, (II) a correlation between mitochondrial morphology, respiratory function and transcriptomics, (III) machine learning predicted novel roles of genes and pathways in autophagic processes and (IV) individual gene function inferences and interactions among biological processes via multi-feature clustering. These studies provide a platform to interrogate underexplored aspects of AD biology and offer several specific hypotheses for future drug discovery efforts.


Assuntos
Doença de Alzheimer/genética , Autofagia/genética , Modelos Genéticos , Agregação Patológica de Proteínas/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Aprendizado de Máquina , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios , Agregação Patológica de Proteínas/patologia , Transdução de Sinais/genética
8.
ASN Neuro ; 10: 1759091418782304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016877

RESUMO

Continuous exposure to aerosolized fine (particle size ≤2.5 µm) and ultrafine (particle size ≤0.1 µm) particulates can trigger innate inflammatory responses in the lung and brain depending on particle composition. Most studies of manmade toxicants use inhalation exposure routes, whereas most studies of allergens use soluble solutions administered via intranasal or injection routes. Here, we tested whether continuous inhalation exposure to aerosolized Alternaria alternata particulates (a common fungal allergen associated with asthma) would induce innate inflammatory responses in the lung and brain. By designing a new environmental chamber able to control particle size distribution and mass concentration, we continuously exposed adult mice to aerosolized ultrafine Alternaria particulates for 96 hr. Despite induction of innate immune responses in the lung, induction of innate immune responses in whole brain samples was not detected by quantitative polymerase chain reaction or flow cytometry. However, exposure did trigger decreases in Arginase 1, inducible nitric oxide synthase, and tumor necrosis factor alpha mRNA in the brainstem samples containing the central nervous system respiratory circuit (the dorsal respiratory group, ventral respiratory group, and the pre-Bötzinger and Bötzinger complexes). In addition, a significant decrease in the percentage of Toll-like receptor 2-expressing brainstem microglia was detected by flow cytometry. Histologic analysis revealed a significant decrease in Iba1 but not glial fibrillary acidic protein immunoreactivity in both the brainstem and the hippocampus. Together these data indicate that inhalation exposure to a natural fungal allergen under conditions sufficient to induce lung inflammation surprisingly causes reductions in baseline expression of select innate immune molecules (similar to that observed during endotoxin tolerance) in the region of the central nervous system controlling respiration.


Assuntos
Alérgenos/toxicidade , Tronco Encefálico/metabolismo , Fungos/química , Imunidade Inata/fisiologia , Pneumonia/etiologia , Pneumonia/patologia , Animais , Antígenos CD/metabolismo , Arginase/metabolismo , Modelos Animais de Doenças , Exposição por Inalação , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo
9.
Brain Res ; 1677: 47-57, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28951235

RESUMO

Spreading depression (SD) is a wave of cellular depolarization that travels slowly through susceptible gray matter brain areas. SD is the most likely cause of migraine aura and perhaps migraine pain, and is a well-accepted animal model of migraine. Identification of therapeutics that can prevent SD may have clinical relevance toward migraine treatment. Here we show that insulin-like growth factor-1 (IGF-1) significantly inhibited neocortical SD in vivo after intranasal delivery to rats. A single dose of IGF-1 inhibited SD within an hour, and continued to protect for at least seven days thereafter. A two-week course of IGF-1, administered every third day, further decreased SD susceptibility and showed no aberrant effects on glial activation, nasal mucosa, or serum markers of toxicity. SD begets SD in vitro by mechanisms that involve microglial activation. We add to this relationship by showing that recurrent SD in vivo increased susceptibility to subsequent SD, and that intervention with IGF-1 significantly interrupted this pathology. These findings support nasal administration of IGF-1 as a novel intervention capable of mitigating SD susceptibility, and as a result, potentially migraine.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Neocórtex/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Administração Intranasal , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Humanos , Masculino , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Neocórtex/citologia , Neocórtex/fisiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Cloreto de Potássio , Distribuição Aleatória , Ratos Wistar
10.
Exp Neurol ; 234(2): 398-404, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22281105

RESUMO

Preeclampsia is a hypertensive disorder of pregnancy that affects many organs including the brain. Neurological complications occur during preeclampsia, the most serious of which is seizure known as eclampsia. Although preeclampsia can precede the eclamptic seizure, it often occurs during normal pregnancy, suggesting that processes associated with normal pregnancy can promote neuronal excitability. Here we investigated whether circulating inflammatory mediators that are elevated late in gestation when seizure also occurs are hyperexcitable to neuronal tissue. Evoked field potentials were measured in hippocampal slices in which control horse serum that slices are normally grown in, was replaced with serum from nonpregnant or late-pregnant Wistar rats for 48 h. We found that serum from pregnant, but not nonpregnant rats, caused hyperexcitability to hippocampal neurons and seizure activity that was abrogated by inhibition of tumor necrosis factor alpha (TNFα) signaling. Additionally, application of TNFα mimicked this increased excitability. Pregnant serum also caused morphological changes in microglia characteristic of activation, and increased TNFα mRNA expression that was not seen with exposure to nonpregnant serum. However, TNFα protein was not found to be elevated in pregnant serum itself, suggesting that other circulating factors during pregnancy caused activation of hippocampal slice cells to produce a TNFα-mediated increase in neuronal excitability. Lastly, although pregnant serum caused neuroinflammation and hyperexcitability of hippocampal slices, it did not increase blood-brain barrier permeability, nor were pregnant rats from which the serum was taken undergoing seizure. Thus, the BBB has an important role in protecting the brain from circulating neuroinflammatory mediators that are hyperexcitable to the brain during pregnancy. These studies provide novel insight into the underlying cause of eclampsia without elevated blood pressure and the protective role of the BBB that prevents exposure of the brain to hyperexcitable factors.


Assuntos
Potenciais Evocados/fisiologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Microglia/fisiologia , Gravidez , Ratos , Ratos Wistar , Soro , Transdução de Sinais/fisiologia
11.
PLoS One ; 6(4): e19294, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541289

RESUMO

Spreading depression (SD) is thought to cause migraine aura, and perhaps migraine, and includes a transient loss of synaptic activity preceded and followed by increased neuronal excitability. Activated microglia influence neuronal activity and play an important role in homeostatic synaptic scaling via release of cytokines. Furthermore, enhanced neuronal function activates microglia to not only secrete cytokines but also to increase the motility of their branches, with somata remaining stationary. While SD also increases the release of cytokines from microglia, the effects on microglial movement from its synaptic activity fluctuations are unknown. Accordingly, we used time-lapse imaging of rat hippocampal slice cultures to probe for microglial movement associated with SD. We observed that in uninjured brain whole microglial cells moved. The movements were well described by the type of Lévy flight known to be associated with an optimal search pattern. Hours after SD, when synaptic activity rose, microglial cell movement was significantly increased. To test how synaptic activity influenced microglial movement, we enhanced neuronal activity with chemical long-term potentiation or LPS and abolished it with TTX. We found that microglial movement was significantly decreased by enhanced neuronal activity and significantly increased by activity blockade. Finally, application of glutamate and ATP to mimic restoration of synaptic activity in the presence of TTX stopped microglial movement that was otherwise seen with TTX. Thus, synaptic activity retains microglial cells in place and an absence of synaptic activity sends them off to influence wider expanses of brain. Perhaps increased microglial movements after SD are a long-lasting, and thus maladaptive, response in which these cells increase neuronal activity via contact or paracrine signaling, which results in increased susceptibility of larger brain areas to SD. If true, then targeting mechanisms that retard activity-dependent microglial Lévy flights may be a novel means to reduce susceptibility to migraine.


Assuntos
Movimento Celular , Microglia/patologia , Transtornos de Enxaqueca/patologia , Animais , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Hipocampo/patologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Comunicação Parácrina/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Ratos , Sinapses/efeitos dos fármacos , Sinapses/patologia
12.
J Vis Exp ; (52)2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21694695

RESUMO

Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.


Assuntos
Transtornos de Enxaqueca/imunologia , Transtornos de Enxaqueca/patologia , Modelos Imunológicos , Modelos Neurológicos , Neurônios/imunologia , Neurônios/patologia , Animais , Doença Crônica , Hipocampo/citologia , Hipocampo/imunologia , Transdução de Sinais/imunologia
13.
Dev Neurobiol ; 67(12): 1614-26, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17562531

RESUMO

The molecular mechanisms underlying remodeling of neural networks remain largely unknown. In Drosophila, widespread neural remodeling occurs during metamorphosis, and is regulated by ecdysone. Kruppel-homolog 1 (Kr-h1) is a zinc finger transcription factor known to play a role in orchestrating ecdysone-regulated transcriptional pathways and, furthermore, implicated in governing axon morphogenesis. Interestingly, in honey bee workers, neural expression of the Apis mellifera homolog of Kr-h1 is enhanced during their transition to foraging behavior when there is increased neurite outgrowth, branching, and synapse formation. Here, we assessed the role(s) of KR-H1 in Drosophila neuronal remodeling and morphology. We characterized the effect of Kr-h1 expression on neuronal morphology through Drosophila larval, pupal, and adult stages. Increased expression of Kr-h1 led to reduced branching in individual neurons and gross morphological changes in the mushroom bodies (MBs), while knocking down Kr-h1 did not produce any obvious changes in neural morphology. Drosophila Kr-h1 is normally expressed when MB neurons do not undergo active morphogenesis, suggesting that it may play a role in inhibiting morphogenesis. Further, loss of endogenous KR-H1 enhanced the neuronal morphogenesis that is otherwise delayed due to defective TGF-beta signaling. However, loss of KR-H1 alone did not affect neuronal morphogenesis. In addition, Kr-h1 expression remains strongly linked to ecdysone-regulated pathways: Kr-h1 expression is regulated by usp, which dimerizes to the ecdysone receptor, and Kr-h1 expression is essential for proper patterning of the ecdysone receptor isoforms in the late larval central nervous system. Thus, although KR-H1 has a potential for modulating neuronal morphogenesis, it appears physiologically involved in coordinating general ecdysone signaling.


Assuntos
Encéfalo/embriologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Padronização Corporal/fisiologia , Encéfalo/metabolismo , Drosophila , Ecdisona/metabolismo , Imuno-Histoquímica , Larva , Metamorfose Biológica , Microscopia Confocal , Morfogênese , Mosaicismo , Corpos Pedunculados/embriologia , Corpos Pedunculados/metabolismo , Pupa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA