Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(6): 1647-1654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38309597

RESUMO

BACKGROUND: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. OBJECTIVE: We hypothesized that children raised in farm environments have a lower incidence of respiratory illnesses over the first 2 years of life than nonfarm children. We also analyzed whether farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. METHODS: The Wisconsin Infant Study Cohort included farm (n = 156) and nonfarm (n = 155) families with children followed to age 2 years. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression in a subset of 64 children at age 2 years was compared to farm exposure and respiratory illness history. RESULTS: Farm versus nonfarm children had nominally lower rates of respiratory illnesses (rate ratio 0.82 [95% CI, 0.69, 0.97]) with a stepwise reduction in illness rates in children exposed to 0, 1, or ≥2 animal species, but these trends were nonsignificant in a multivariable model. Farm exposures and preceding respiratory illnesses were positively related to nasal cell gene signatures for mononuclear cells and innate and antimicrobial responses. CONCLUSIONS: Maternal and infant exposure to farms and farm animals was associated with nonsignificant trends for reduced respiratory illnesses. Nasal cell gene expression in a subset of children suggests that farm exposures and respiratory illnesses in early life are associated with distinct patterns of mucosal immune expression.


Assuntos
Exposição Ambiental , Fazendas , Mucosa Nasal , Doenças Respiratórias , Humanos , Feminino , Animais , Masculino , Lactente , Exposição Ambiental/efeitos adversos , Pré-Escolar , Mucosa Nasal/imunologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/genética , Animais Domésticos/imunologia , Recém-Nascido , Wisconsin/epidemiologia
2.
J Med Virol ; 95(8): e29058, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37638498

RESUMO

Rhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections. We pooled RV diagnostic data from multiple studies of children with respiratory illnesses and compared the expected versus observed frequencies of sequential infections with RV-A or RV-C types using log-linear regression models. We tested longitudinally collected plasma samples from children to compare the duration of RV-A versus RV-C nAb responses. Our models identified limited reciprocal cross-neutralizing relationships for RV-A (A12-A75, A12-A78, A20-A78, and A75-A78) and only one for RV-C (C2-C40). Serologic analysis using reference mouse sera and banked human plasma samples confirmed that C40 infections induced nAb responses with modest heterotypic activity against RV-C2. Mixed-effects regression modeling of longitudinal human plasma samples collected from ages 2 to 18 years demonstrated that RV-A and RV-C illnesses induced nAb responses of similar duration. These results indicate that both RV-A and RV-C nAb responses have only modest cross-reactivity that is limited to genetically similar types. Contrary to our initial hypothesis, RV-C species may include even fewer cross-neutralizing types than RV-A, whereas the duration of nAb responses during childhood is similar between the two species. The modest heterotypic responses suggest that RV vaccines must have a broad representation of prevalent types.


Assuntos
Asma , Rhinovirus , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Formação de Anticorpos , Anticorpos Neutralizantes , Reações Cruzadas
3.
Am J Respir Crit Care Med ; 203(7): 822-830, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33357024

RESUMO

Rationale: Rhinovirus (RV) C can cause asymptomatic infection and respiratory illnesses ranging from the common cold to severe wheezing.Objectives: To identify how age and other individual-level factors are associated with susceptibility to RV-C illnesses.Methods: Longitudinal data from the COAST (Childhood Origins of Asthma) birth cohort study were analyzed to determine relationships between age and RV-C infections. Neutralizing antibodies specific for RV-A and RV-C (three types each) were determined using a novel PCR-based assay. Data were pooled from 14 study cohorts in the United States, Finland, and Australia, and mixed-effects logistic regression was used to identify factors related to the proportion of RV-C versus RV-A detection.Measurements and Main Results: In COAST, RV-A and RV-C infections were similarly common in infancy, whereas RV-C was detected much less often than RV-A during both respiratory illnesses and scheduled surveillance visits (P < 0.001, χ2) in older children. The prevalence of neutralizing antibodies to RV-A or RV-C types was low (5-27%) at the age of 2 years, but by the age of 16 years, RV-C seropositivity was more prevalent (78% vs. 18% for RV-A; P < 0.0001). In the pooled analysis, the RV-C to RV-A detection ratio during illnesses was significantly related to age (P < 0.0001), CDHR3 genotype (P < 0.05), and wheezing illnesses (P < 0.05). Furthermore, certain RV types (e.g., C2, C11, A78, and A12) were consistently more virulent and prevalent over time.Conclusions: Knowledge of prevalent RV types, antibody responses, and populations at risk based on age and genetics may guide the development of vaccines or other novel therapies against this important respiratory pathogen.


Assuntos
Anticorpos Neutralizantes/sangue , Asma/fisiopatologia , Suscetibilidade a Doenças , Infecções por Picornaviridae/fisiopatologia , Sons Respiratórios/fisiopatologia , Rhinovirus/genética , Rhinovirus/patogenicidade , Adolescente , Fatores Etários , Asma/epidemiologia , Asma/virologia , Austrália/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Finlândia/epidemiologia , Variação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/imunologia , Estados Unidos/epidemiologia
4.
Am J Primatol ; 84(2): e23358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35015311

RESUMO

Viral infection is a major cause of ill health in wild chimpanzees (Pan troglodytes), but most evidence to date has come from conspicuous disease outbreaks with high morbidity and mortality. To examine the relationship between viral infection and ill health during periods not associated with disease outbreaks, we conducted a longitudinal study of wild eastern chimpanzees (P. t. schweinfurthii) in the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We collected standardized, observational health data for 4 years and then used metagenomics to characterize gastrointestinal viromes (i.e., all viruses recovered from fecal samples) in individual chimpanzees before and during episodes of clinical disease. We restricted our analyses to viruses thought to infect mammals or primarily associated with mammals, discarding viruses associated with nonmammalian hosts. We found 18 viruses (nine of which were previously identified in this population) from at least five viral families. Viral richness (number of viruses per sample) did not vary by health status. By contrast, total viral load (normalized proportion of sequences mapping to viruses) was significantly higher in ill individuals compared with healthy individuals. Furthermore, when ill, Kanyawara chimpanzees exhibited higher viral loads than Ngogo chimpanzees, and males, but not females, exhibited higher infection rates with certain viruses and higher total viral loads as they aged. Post-hoc analyses, including the use of a machine-learning classification method, indicated that one virus, salivirus (Picornaviridae), was the main contributor to health-related and community-level variation in viral loads. Another virus, chimpanzee stool-associated virus (chisavirus; unclassified Picornavirales), was associated with ill health at Ngogo but not at Kanyawara. Chisavirus, chimpanzee adenovirus (Adenoviridae), and bufavirus (Parvoviridae) were also associated with increased age in males. Associations with sex and age are consistent with the hypothesis that nonlethal viral infections cumulatively reflect or contribute to senescence in long-lived species such as chimpanzees.


Assuntos
Pan troglodytes , Vírus , Animais , Fezes , Humanos , Estudos Longitudinais , Masculino , Mamíferos , Uganda/epidemiologia
5.
J Infect Dis ; 220(2): 187-194, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30383246

RESUMO

BACKGROUND: Experimental inoculation is an important tool for common cold and asthma research. Producing rhinovirus (RV) inocula from nasal secretions has required prolonged observation of the virus donor to exclude extraneous pathogens. We produced a RV-A16 inoculum using reverse genetics and determined the dose necessary to cause moderate colds in seronegative volunteers. METHODS: The consensus sequence of RV-A16 from a previous inoculum was cloned, and inoculum virus was produced using reverse genetics techniques. After safety testing, volunteers were inoculated with either RV-A16 (n = 26) or placebo (n = 10), Jackson cold scores were recorded, and nasal secretions were tested for shedding of RV-A16 ribonucleic acid. RESULTS: The reverse genetics process produced infectious virus that was neutralized by specific antisera and had a mutation rate similar to conventional virus growth techniques. The 1000 median tissue culture infectious dose (TCID50) dose produced moderate colds in most individuals with effects similar to that of a previously tested conventional RV-A16 inoculum. CONCLUSIONS: Reverse genetics techniques produced a RV-A16 inoculum that can cause clinical colds in seronegative volunteers, and they also serve as a stable source of virus for laboratory use. The recombinant production procedures eliminate the need to derive seed virus from nasal secretions, thus precluding introduction of extraneous pathogens through this route.


Assuntos
Infecções por Picornaviridae/virologia , Genética Reversa/métodos , Rhinovirus/genética , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Humanos , Masculino , Muco , Infecções por Picornaviridae/transmissão , Rhinovirus/fisiologia
6.
Emerg Infect Dis ; 24(2): 267-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350142

RESUMO

We describe a lethal respiratory outbreak among wild chimpanzees in Uganda in 2013 for which molecular and epidemiologic analyses implicate human rhinovirus C as the cause. Postmortem samples from an infant chimpanzee yielded near-complete genome sequences throughout the respiratory tract; other pathogens were absent. Epidemiologic modeling estimated the basic reproductive number (R0) for the epidemic as 1.83, consistent with the common cold in humans. Genotyping of 41 chimpanzees and examination of 24 published chimpanzee genomes from subspecies across Africa showed universal homozygosity for the cadherin-related family member 3 CDHR3-Y529 allele, which increases risk for rhinovirus C infection and asthma in human children. These results indicate that chimpanzees exhibit a species-wide genetic susceptibility to rhinovirus C and that this virus, heretofore considered a uniquely human pathogen, can cross primate species barriers and threatens wild apes. We advocate engineering interventions and prevention strategies for rhinovirus infections for both humans and wild apes.


Assuntos
Doenças dos Símios Antropoides/virologia , Enterovirus , Pan troglodytes , Infecções por Picornaviridae/veterinária , Animais , Doenças dos Símios Antropoides/epidemiologia , Surtos de Doenças , Predisposição Genética para Doença , Genótipo , Modelos Biológicos , Pan troglodytes/genética , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/mortalidade , Infecções por Picornaviridae/virologia , Uganda
7.
Am J Respir Crit Care Med ; 196(8): 985-992, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28608756

RESUMO

RATIONALE: Allergic inflammation has been linked to increased susceptibility to viral illnesses, but it is unclear whether this association is causal. OBJECTIVES: To test whether omalizumab treatment to reduce IgE would shorten the frequency and duration of rhinovirus (RV) illnesses in children with allergic asthma. METHODS: In the PROSE (Preventative Omalizumab or Step-up Therapy for Severe Fall Exacerbations) study, we examined children with allergic asthma (aged 6-17 yr; n = 478) from low-income census tracts in eight U.S. cities, and we analyzed virology for the groups randomized to treatment with guidelines-based asthma care (n = 89) or add-on omalizumab (n = 259). Weekly nasal mucus samples were analyzed for RVs, and respiratory symptoms and asthma exacerbations were recorded over a 90-day period during the fall seasons of 2012 or 2013. Adjusted illness rates (illnesses per sample) by treatment arm were calculated using Poisson regression. MEASUREMENTS AND MAIN RESULTS: RVs were detected in 97 (57%) of 171 exacerbation samples and 2,150 (36%) of 5,959 nonexacerbation samples (OR, 2.32; P < 0.001). Exacerbations were significantly associated with detection of rhinovirus C (OR, 2.85; P < 0.001) and rhinovirus A (OR, 2.92; P < 0.001), as well as, to a lesser extent, rhinovirus B (OR, 1.98; P = 0.019). Omalizumab decreased the duration of RV infection (11.2 d vs. 12.4 d; P = 0.03) and reduced peak RV shedding by 0.4 log units (95% confidence interval, -0.77 to -0.02; P = 0.04). Finally, omalizumab decreased the frequency of RV illnesses (risk ratio, 0.64; 95% confidence interval, 0.49-0.84). CONCLUSIONS: In children with allergic asthma, treatment with omalizumab decreased the duration of RV infections, viral shedding, and the risk of RV illnesses. These findings provide direct evidence that blocking IgE decreases susceptibility to RV infections and illness. Clinical trial registered with www.clinicaltrials.gov (NCT01430403).


Assuntos
Antiasmáticos/efeitos adversos , Antiasmáticos/uso terapêutico , Asma/complicações , Asma/tratamento farmacológico , Omalizumab/efeitos adversos , Omalizumab/uso terapêutico , Viroses/tratamento farmacológico , Viroses/etiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Rhinovirus/efeitos dos fármacos , Estados Unidos
8.
J Allergy Clin Immunol ; 136(6): 1476-1485, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518090

RESUMO

BACKGROUND: Short-term targeted treatment can potentially prevent fall asthma exacerbations while limiting therapy exposure. OBJECTIVE: We sought to compare (1) omalizumab with placebo and (2) omalizumab with an inhaled corticosteroid (ICS) boost with regard to fall exacerbation rates when initiated 4 to 6 weeks before return to school. METHODS: A 3-arm, randomized, double-blind, double placebo-controlled, multicenter clinical trial was conducted among inner-city asthmatic children aged 6 to 17 years with 1 or more recent exacerbations (clincaltrials.gov #NCT01430403). Guidelines-based therapy was continued over a 4- to 9-month run-in phase and a 4-month intervention phase. In a subset the effects of omalizumab on IFN-α responses to rhinovirus in PBMCs were examined. RESULTS: Before the falls of 2012 and 2013, 727 children were enrolled, 513 were randomized, and 478 were analyzed. The fall exacerbation rate was significantly lower in the omalizumab versus placebo arms (11.3% vs 21.0%; odds ratio [OR], 0.48; 95% CI, 0.25-0.92), but there was no significant difference between omalizumab and ICS boost (8.4% vs 11.1%; OR, 0.73; 95% CI, 0.33-1.64). In a prespecified subgroup analysis, among participants with an exacerbation during the run-in phase, omalizumab was significantly more efficacious than both placebo (6.4% vs 36.3%; OR, 0.12; 95% CI, 0.02-0.64) and ICS boost (2.0% vs 27.8%; OR, 0.05; 95% CI, 0.002-0.98). Omalizumab improved IFN-α responses to rhinovirus, and within the omalizumab group, greater IFN-α increases were associated with fewer exacerbations (OR, 0.14; 95% CI, 0.01-0.88). Adverse events were rare and similar among arms. CONCLUSIONS: Adding omalizumab before return to school to ongoing guidelines-based care among inner-city youth reduces fall asthma exacerbations, particularly among those with a recent exacerbation.


Assuntos
Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Omalizumab/uso terapêutico , Administração por Inalação , Adolescente , Corticosteroides/efeitos adversos , Antiasmáticos/efeitos adversos , Asma/imunologia , Criança , Método Duplo-Cego , Feminino , Humanos , Interferon-alfa/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Omalizumab/efeitos adversos , Rhinovirus , Estações do Ano
9.
J Clin Microbiol ; 52(7): 2461-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789198

RESUMO

Human rhinoviruses (RVs), comprising three species (A, B, and C) of the genus Enterovirus, are responsible for the majority of upper respiratory tract infections and are associated with severe lower respiratory tract illnesses such as pneumonia and asthma exacerbations. High genetic diversity and continuous identification of new types necessitate regular updating of the diagnostic assays for the accurate and comprehensive detection of circulating RVs. Methods for molecular typing based on phylogenetic comparisons of a variable fragment in the 5' untranslated region were improved to increase assay sensitivity and to eliminate nonspecific amplification of human sequences, which are observed occasionally in clinical samples. A modified set of primers based on new sequence information and improved buffers and enzymes for seminested PCR assays provided higher specificity and sensitivity for virus detection. In addition, new diagnostic primers were designed for unequivocal species and type assignments for RV-C isolates, based on phylogenetic analysis of partial VP4/VP2 coding sequences. The improved assay was evaluated by typing RVs in >3,800 clinical samples. RVs were successfully detected and typed in 99% of the samples that were RV positive in multiplex diagnostic assays.


Assuntos
Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Rhinovirus/classificação , Rhinovirus/genética , Regiões 5' não Traduzidas , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , Primers do DNA/genética , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , RNA Viral/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
12.
Emerg Microbes Infect ; 8(1): 139-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866768

RESUMO

Respiratory viruses of human origin infect wild apes across Africa, sometimes lethally. Here we report simultaneous outbreaks of two distinct human respiratory viruses, human metapneumovirus (MPV; Pneumoviridae: Metapneumovirus) and human respirovirus 3 (HRV3; Paramyxoviridae; Respirovirus, formerly known as parainfluenza virus 3), in two chimpanzee (Pan troglodytes schweinfurthii) communities in the same forest in Uganda in December 2016 and January 2017. The viruses were absent before the outbreaks, but each was present in ill chimpanzees from one community during the outbreak period. Clinical signs and gross pathologic changes in affected chimpanzees closely mirrored symptoms and pathology commonly observed in humans for each virus. Epidemiologic modelling showed that MPV and HRV3 were similarly transmissible (R0 of 1.27 and 1.48, respectively), but MPV caused 12.2% mortality mainly in infants and older chimpanzees, whereas HRV3 caused no direct mortality. These results are consistent with the higher virulence of MPV than HRV3 in humans, although both MPV and HRV3 cause a significant global disease burden. Both viruses clustered phylogenetically within groups of known human variants, with MPV closely related to a lethal 2009 variant from mountain gorillas (Gorilla beringei beringei), suggesting two independent and simultaneous reverse zoonotic origins, either directly from humans or via intermediary hosts. These findings expand our knowledge of human origin viruses threatening wild chimpanzees and suggest that such viruses might be differentiated by their comparative epidemiological dynamics and pathogenicity in wild apes. Our results also caution against assuming common causation in coincident outbreaks.


Assuntos
Doenças dos Símios Antropoides/virologia , Surtos de Doenças/veterinária , Metapneumovirus/isolamento & purificação , Vírus da Parainfluenza 3 Humana/isolamento & purificação , Infecções por Paramyxoviridae/transmissão , Infecções Respiratórias/veterinária , Animais , Doenças dos Símios Antropoides/epidemiologia , Fezes/virologia , Feminino , Humanos , Masculino , Metapneumovirus/genética , Pan troglodytes/virologia , Vírus da Parainfluenza 3 Humana/genética , Infecções por Paramyxoviridae/diagnóstico , Filogenia , Infecções Respiratórias/virologia , Uganda/epidemiologia , Zoonoses/virologia
13.
Cell Host Microbe ; 24(3): 341-352.e5, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212648

RESUMO

Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with "transient wheeze" that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children.


Assuntos
Imunoglobulina E/sangue , Microbiota/genética , Nasofaringe/microbiologia , Nasofaringe/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Doença Aguda , Asma/diagnóstico , Asma/prevenção & controle , Pré-Escolar , Estudos de Coortes , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/virologia , Feminino , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/prevenção & controle , Lactente , Estudos Longitudinais , Masculino , Estudos Prospectivos , Sons Respiratórios , Infecções Respiratórias/sangue , Fatores de Risco
14.
BMC Immunol ; 7: 29, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17156490

RESUMO

BACKGROUND: Cryopreservation of peripheral blood mononuclear cells has been used to preserve and standardize immunologic measurements for multicenter studies, however, effects of cryopreservation on cytokine responses are incompletely understood. In designing immunologic studies for a new multicenter birth cohort study of childhood asthma, we performed a series of experiments to determine the effects of two different methods of cryopreservation on the cytokine responses of cord and peripheral blood mononuclear cells. RESULTS: Paired samples of PBMC were processed freshly, or after cryopreservation in a Nalgene container (NC) or a controlled-rate freezer (CRF). Although there were some differences between the methods, cryopreservation inhibited PHA-induced IL-10 secretion and Der f 1-induced IL-2 secretion, and augmented PHA-induced IL-2 secretion and spontaneous secretion of TNF-alpha. In separate experiments, NC cryopreservation inhibited secretion of several cytokines (IL-13, IL-10, IFN-gamma, TNF-alpha) by PHA-stimulated cord blood mononuclear cells. With the exception of PHA-induced IL-13, results from fresh and cryopreserved cord blood samples were not significantly correlated. Finally, in reproducibility studies involving processing of identical cell samples in up to 4 separate laboratories, variances in cytokine responses of fresh cells stimulated at separate sites did not exceed those in cryopreserved cells stimulated at a central site. CONCLUSION: Collectively, these studies indicate that cryopreservation can affect mononuclear cell cytokine response profiles, and that IL-10 secretion and antigen-induced responses may be especially vulnerable. These studies also demonstrate that mononuclear cell responses can be standardized for performance in a small number of laboratories for multicenter studies, and underscore the importance of measuring reproducibility and of testing whether cryopreservation techniques alter specific immunologic outcomes.


Assuntos
Bioensaio/normas , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo , Algoritmos , Antígenos/imunologia , Coleta de Amostras Sanguíneas/efeitos adversos , Criopreservação/métodos , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Mitógenos/imunologia , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia , Padrões de Referência
15.
Cell Host Microbe ; 17(5): 704-15, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865368

RESUMO

The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma.


Assuntos
Asma/epidemiologia , Microbiota , Nasofaringe/microbiologia , Nasofaringe/virologia , Infecções Respiratórias/patologia , Humanos , Lactente , Estudos Longitudinais , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Medição de Risco
16.
J Allergy Clin Immunol ; 110(4): 607-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12373269

RESUMO

After viral bronchiolitis at an early age, a chronic asthma-like syndrome develops in BN, but not F344, rats. We hypothesized that the BN strain is less effective at clearing virus from the involved tissues. Weanling BN and F344 rats were inoculated with Sendai virus, and lung and peribronchial lymph nodes were harvested from each strain at 5 to 84 days after infection; control tissues were obtained from noninfected rats. Lung viral titers were similar for the 2 strains, with no infectious virus detectable by day 10. However, viral RNA was detected consistently by means of RT-PCR analyses in lungs and lymph nodes of both strains from days 10 to 27 and was still present at day 84 in some of the tissues from each strain. In contrast, there were strain-related differences in immune responses because IL-13 levels remained increased in the lung secretions of BN rats at 4 weeks after inoculation. Thus although Sendai virus could persist for at least 3 months after an acute infection in rats, this did not differ with strain. The persistent increase in IL-13 suggests instead that the strain-related variability in virus-associated airway pathology might be determined by the host response to infection rather than by the intensity or duration of infection.


Assuntos
Bronquiolite Viral/complicações , RNA Viral/análise , Transtornos Respiratórios/etiologia , Infecções por Respirovirus/genética , Vírus Sendai/genética , Animais , Bronquiolite Viral/virologia , Suscetibilidade a Doenças , Masculino , Ratos , Ratos Endogâmicos BN/genética , Ratos Endogâmicos F344/genética , Ensaio de Placa Viral , Latência Viral
17.
Am J Respir Cell Mol Biol ; 26(5): 594-601, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11970912

RESUMO

Respiratory viruses, including rhinoviruses, infect respiratory epithelium and induce a variety of cytokines and chemokines that can initiate an inflammatory response. Cytokines, such as interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha, could enhance epithelial cell activation by inducing virus receptors. To test this hypothesis, effects of IFN-gamma or TNF-alpha on expression of intercellular adhesion molecule (ICAM)-1, rhinovirus binding, and virus-induced chemokine secretion on A549 and human bronchial epithelial cells (HBEC) were determined. The results varied with the type of cell. IFN-gamma was a stronger inducer of ICAM-1 and viral binding on HBEC, whereas TNF-alpha had greater effects on A549 cells. In addition, IFN-gamma, but not TNF-alpha, synergistically enhanced regulated on activation, normal T cells expressed and secreted (RANTES) mRNA expression and protein secretion induced by RV16 or RV49. To determine whether IFN-gamma could enhance RANTES secretion independent of effects on ICAM-1 and RV binding, HBEC were transfected with RV16 RNA in the presence or absence of IFN-gamma. RV16 RNA alone stimulated RANTES secretion, and this effect was enhanced by IFN-gamma. These results demonstrate that IFN-gamma can enhance rhinovirus-induced RANTES secretion by increasing viral binding, and through a second receptor-independent pathway. These findings suggest that IFN-gamma, by upregulating RANTES secretion, could be an important regulator of the initial immune response to rhinovirus infections.


Assuntos
Antivirais/farmacologia , Quimiocina CCL5/metabolismo , Interferon gama/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Rhinovirus/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Ligação Proteica/efeitos dos fármacos , RNA de Cadeia Dupla/farmacologia , RNA Viral/administração & dosagem , RNA Viral/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Replicação Viral/efeitos dos fármacos
18.
Am J Respir Cell Mol Biol ; 28(6): 731-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12600836

RESUMO

Virus-induced secretion of proinflammatory chemokines (e.g., regulated on activation, normal T cells expressed and secreted [RANTES], interleukin [IL]-8) by airway epithelial cells helps to initiate antiviral responses and airway inflammation by enhancing inflammatory cell recruitment. To define mechanisms for virus-induced chemokine secretion, monolayers of nontransformed bronchial epithelial cells were transfected or incubated with polydeoxyinosinic-deoxycytidylic acid (synthetic double-stranded [ds] RNA), rhinovirus dsRNA, or single-stranded RNA (ssRNA), and the secretion of selected chemokines was determined. Transfection or incubation with dsRNA, but not ssRNA, significantly enhanced secretion of RANTES and IL-8, but not eotaxin or macrophage inflammatory protein-1alpha. Mechanistically, dsRNA induced and activated dsRNA-dependent protein kinase (PKR), and activated nuclear factor-kappaB and p38 mitogen-activated protein kinase. Furthermore, the PKR inhibitor 2-aminopurine significantly blocked dsRNA-induced RANTES and IL-8 secretion, whereas the p38 mitogen-activated protein kinase inhibitor SB203580 suppressed dsRNA-induced IL-8, but not RANTES. These findings indicate that dsRNA selectively induce the secretion of chemokines such as IL-8 and RANTES, and implicate dsRNA-sensitive signaling proteins in this process. Moreover, these data suggest that this may be an important mechanism for the selective secretion of chemokines by viruses (e.g., rhinovirus, respiratory syncytial virus, influenza) that synthesize dsRNA during replication.


Assuntos
Brônquios/citologia , Quimiocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , RNA de Cadeia Dupla/farmacologia , Linhagem Celular Transformada , Células Cultivadas , Quimiocina CCL11 , Quimiocina CCL5/metabolismo , Quimiocinas CC/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Humanos , Imidazóis/farmacologia , Interleucina-8/metabolismo , Cinética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Polinucleotídeos/química , Polinucleotídeos/farmacologia , Piridinas/farmacologia , RNA de Cadeia Dupla/síntese química , RNA Viral/farmacologia , Rhinovirus/genética , Transdução de Sinais , Transfecção , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA