Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 148(4): 780-91, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341448

RESUMO

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Assuntos
Neoplasias Faciais/veterinária , Instabilidade Genômica , Marsupiais/genética , Mutação , Animais , Evolução Clonal , Espécies em Perigo de Extinção , Neoplasias Faciais/epidemiologia , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Dados de Sequência Molecular , Tasmânia/epidemiologia
2.
Nucleic Acids Res ; 43(14): 6945-58, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25916844

RESUMO

To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.


Assuntos
Genes p53 , Mutação , Neoplasias Ovarianas/genética , Reparo de DNA por Recombinação , Tetraploidia , Carcinoma/genética , DNA Primase/genética , Feminino , Humanos , Perda de Heterozigosidade , Taxa de Mutação
3.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20016485

RESUMO

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Adulto , Linhagem Celular Tumoral , Dano ao DNA/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Dosagem de Genes/genética , Humanos , Perda de Heterozigosidade/genética , Masculino , Melanoma/etiologia , Melanoma/genética , MicroRNAs/genética , Mutagênese Insercional/genética , Neoplasias/etiologia , Polimorfismo de Nucleotídeo Único/genética , Medicina de Precisão , Deleção de Sequência/genética , Raios Ultravioleta
4.
Blood ; 120(20): 4191-6, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22915640

RESUMO

Chronic lymphocytic leukemia is characterized by relapse after treatment and chemotherapy resistance. Similarly, in other malignancies leukemia cells accumulate mutations during growth, forming heterogeneous cell populations that are subject to Darwinian selection and may respond differentially to treatment. There is therefore a clinical need to monitor changes in the subclonal composition of cancers during disease progression. Here, we use whole-genome sequencing to track subclonal heterogeneity in 3 chronic lymphocytic leukemia patients subjected to repeated cycles of therapy. We reveal different somatic mutation profiles in each patient and use these to establish probable hierarchical patterns of subclonal evolution, to identify subclones that decline or expand over time, and to detect founder mutations. We show that clonal evolution patterns are heterogeneous in individual patients. We conclude that genome sequencing is a powerful and sensitive approach to monitor disease progression repeatedly at the molecular level. If applied to future clinical trials, this approach might eventually influence treatment strategies as a tool to individualize and direct cancer treatment.


Assuntos
DNA de Neoplasias/genética , Estudo de Associação Genômica Ampla , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Análise de Sequência de DNA , Alelos , Transformação Celular Neoplásica/genética , Deleção Clonal , Células Clonais , Análise Mutacional de DNA , Progressão da Doença , Evolução Molecular , Frequência do Gene , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Proteínas de Neoplasias/genética , Seleção Genética
5.
Nature ; 440(7087): 1045-9, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16625196

RESUMO

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.


Assuntos
Cromossomos Humanos Par 17/genética , Evolução Molecular , Animais , Composição de Bases , Duplicação Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Análise de Sequência de DNA , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genética
6.
PLoS Comput Biol ; 3(10): 2032-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17967053

RESUMO

Network analysis transcends conventional pairwise approaches to data analysis as the context of components in a network graph can be taken into account. Such approaches are increasingly being applied to genomics data, where functional linkages are used to connect genes or proteins. However, while microarray gene expression datasets are now abundant and of high quality, few approaches have been developed for analysis of such data in a network context. We present a novel approach for 3-D visualisation and analysis of transcriptional networks generated from microarray data. These networks consist of nodes representing transcripts connected by virtue of their expression profile similarity across multiple conditions. Analysing genome-wide gene transcription across 61 mouse tissues, we describe the unusual topography of the large and highly structured networks produced, and demonstrate how they can be used to visualise, cluster, and mine large datasets. This approach is fast, intuitive, and versatile, and allows the identification of biological relationships that may be missed by conventional analysis techniques. This work has been implemented in a freely available open-source application named BioLayout Express(3D).


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transcrição Gênica , Algoritmos , Animais , Análise por Conglomerados , Expressão Gênica , Redes Reguladoras de Genes , Imageamento Tridimensional , Camundongos , Reconhecimento Automatizado de Padrão , Software
7.
Nucleic Acids Res ; 34(Database issue): D140-4, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381832

RESUMO

The miRBase database aims to provide integrated interfaces to comprehensive microRNA sequence data, annotation and predicted gene targets. miRBase takes over functionality from the microRNA Registry and fulfils three main roles: the miRBase Registry acts as an independent arbiter of microRNA gene nomenclature, assigning names prior to publication of novel miRNA sequences. miRBase Sequences is the primary online repository for miRNA sequence data and annotation. miRBase Targets is a comprehensive new database of predicted miRNA target genes. miRBase is available at http://microrna.sanger.ac.uk/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , MicroRNAs/química , MicroRNAs/fisiologia , Animais , Sequência de Bases , Internet , MicroRNAs/genética , Sistema de Registros , Terminologia como Assunto , Interface Usuário-Computador
8.
Nucleic Acids Res ; 33(4): 1141-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15728743

RESUMO

Among bacteria, many species have synonymous codon usage patterns that have been influenced by natural selection for those codons that are translated more accurately and/or efficiently. However, in other species selection appears to have been ineffective. Here, we introduce a population genetics-based model for quantifying the extent to which selection has been effective. The approach is applied to 80 phylogenetically diverse bacterial species for which whole genome sequences are available. The strength of selected codon usage bias, S, is found to vary substantially among species; in 30% of the genomes examined, there was no significant evidence that selection had been effective. Values of S are highly positively correlated with both the number of rRNA operons and the number of tRNA genes. These results are consistent with the hypothesis that species exposed to selection for rapid growth have more rRNA operons, more tRNA genes and more strongly selected codon usage bias. For example, Clostridium perfringens, the species with the highest value of S, can have a generation time as short as 7 min.


Assuntos
Bactérias/genética , Códon , Bactérias/classificação , Sequência Rica em GC , Dosagem de Genes , Genes de RNAr , Genoma Bacteriano , Óperon , Filogenia , RNA de Transferência/genética
9.
Nat Genet ; 47(7): 717-726, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985138

RESUMO

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Diagnóstico Molecular , Sequência de Bases , Análise Mutacional de DNA , Doenças Genéticas Inatas/genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade
10.
Gene ; 289(1-2): 131-9, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12036591

RESUMO

Pseudomonas aeruginosa PA01 has a large (6.7 Mbp) genome with a high (67%) G+C content. Codon usage in this species is dominated by this compositional bias, with the average G+C content at synonymously variable third positions of codons being 83%. Nevertheless, there is some variation of synonymous codon usage among genes. The nature and causes of this variation were investigated using multivariate statistical analyses. Three trends were identified. The major source of variation was attributable to genes with unusually low G+C content that are probably due to horizontal transfer. A lesser trend among genes was associated with the preferential use of putatively translationally optimal codons in genes expressed at high levels. In addition, genes on the leading strand of replication were on average more G+T-rich. Our findings contradict the results of two previous analyses, and the reasons for the discrepancies are discussed.


Assuntos
Códon/genética , Pseudomonas aeruginosa/genética , Aminoácidos/genética , Composição de Bases , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano
11.
Cancer Res ; 73(24): 7222-31, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154874

RESUMO

Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here, we report wide variation in the expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in the majority of ovarian cancer cell lines (three SDs above the mean of normal ovarian surface epithelial cells) and high-grade primary ovarian cancers. APOBEC3B is active in the nucleus of several ovarian cancer cell lines and elicits a biochemical preference for deamination of cytosines in 5'-TC dinucleotides. Importantly, examination of whole-genome sequence from 16 ovarian cancers reveals that APOBEC3B expression correlates with total mutation load as well as elevated levels of transversion mutations. In particular, high APOBEC3B expression correlates with C-to-A and C-to-G transversion mutations within 5'-TC dinucleotide motifs in early-stage high-grade serous ovarian cancer genomes, suggesting that APOBEC3B-catalyzed genomic uracil lesions are further processed by downstream DNA "repair" enzymes including error-prone translesion polymerases. These data identify a potential role for APOBEC3B in serous ovarian cancer genomic instability.


Assuntos
Cistadenocarcinoma Seroso/genética , Citidina Desaminase/genética , Mutação , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/enzimologia , Cistadenocarcinoma Seroso/patologia , Citidina Desaminase/biossíntese , Citidina Desaminase/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica , Humanos , Antígenos de Histocompatibilidade Menor , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
12.
Sci Transl Med ; 4(154): 154ra135, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23035047

RESUMO

Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.


Assuntos
Doenças Genéticas Inatas/genética , Genoma Humano/genética , Unidades de Terapia Intensiva Neonatal , Análise de Sequência de DNA/métodos , Conexina 26 , Conexinas , Humanos , Recém-Nascido , Estudos Retrospectivos
13.
Expert Opin Biol Ther ; 7(9): 1387-99, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17727328

RESUMO

Evidence is emerging that micro RNA (miRNA) is an important and potentially polymorphic regulatory layer for silencing gene expression in vivo. Knowledge of miRNA targeting may help to elucidate the function of many human genes in common diseases, providing a powerful target validation technology. Accurate in silico prediction of miRNA targets in mRNA is a critical capability, allowing effective evaluation of the impact of variation on the creation, strengthening, weakening and destruction of miRNA binding sites. Application of such analyses identifies thousands of single-nucleotide polymorphisms, which may potentially impact miRNA regulation of mRNA. The authors believe this information may offer a real opportunity to study miRNA function at a number of levels. First, sequence-focused analysis will help to define the functional boundaries of miRNA target binding. Second, one may be able to identify miRNA target variants in mRNA with a direct role in human disease, which may be valuable therapeutic targets.


Assuntos
Regulação da Expressão Gênica , Marcação de Genes/métodos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Humanos
14.
Science ; 316(5824): 608-11, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17463290

RESUMO

MicroRNAs are a class of small RNAs that are increasingly being recognized as important regulators of gene expression. Although hundreds of microRNAs are present in the mammalian genome, genetic studies addressing their physiological roles are at an early stage. We have shown that mice deficient for bic/microRNA-155 are immunodeficient and display increased lung airway remodeling. We demonstrate a requirement of bic/microRNA-155 for the function of B and T lymphocytes and dendritic cells. Transcriptome analysis of bic/microRNA-155-deficient CD4+ T cells identified a wide spectrum of microRNA-155-regulated genes, including cytokines, chemokines, and transcription factors. Our work suggests that bic/microRNA-155 plays a key role in the homeostasis and function of the immune system.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Sistema Imunitário/fisiologia , MicroRNAs/fisiologia , Linfócitos T/imunologia , Regiões 3' não Traduzidas , Animais , Citocinas/biossíntese , Regulação da Expressão Gênica , Marcação de Genes , Homeostase , Imunoglobulina G/biossíntese , Pulmão/patologia , Pneumopatias/imunologia , Pneumopatias/patologia , Ativação Linfocitária , Camundongos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/fisiologia , Salmonelose Animal/imunologia , Células Th1/imunologia , Células Th2/imunologia , Vacinação
15.
Genome Biol ; 7(4): R27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16594986

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short RNAs of around 22 nucleotides that regulate gene expression. The primary transcripts of miRNAs contain double-stranded RNA and are therefore potential substrates for adenosine to inosine (A-to-I) RNA editing. RESULTS: We have conducted a survey of RNA editing of miRNAs from ten human tissues by sequence comparison of PCR products derived from matched genomic DNA and total cDNA from the same individual. Six out of 99 (6%) miRNA transcripts from which data were obtained were subject to A-to-I editing in at least one tissue. Four out of seven edited adenosines were in the mature miRNA and were predicted to change the target sites in 3' untranslated regions. For a further six miRNAs, we identified A-to-I editing of transcripts derived from the opposite strand of the genome to the annotated miRNA. These miRNAs may have been annotated to the wrong genomic strand. CONCLUSION: Our results indicate that RNA editing increases the diversity of miRNAs and their targets, and hence may modulate miRNA function.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Edição de RNA , Adenosina/metabolismo , Humanos , Inosina/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo
16.
Science ; 312(5770): 75-9, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16484454

RESUMO

MicroRNAs (miRNAs) comprise 1 to 3% of all vertebrate genes, but their in vivo functions and mechanisms of action remain largely unknown. Zebrafish miR-430 is expressed at the onset of zygotic transcription and regulates morphogenesis during early development. By using a microarray approach and in vivo target validation, we find that miR-430 directly regulates several hundred target messenger RNA molecules (mRNAs). Most targets are maternally expressed mRNAs that accumulate in the absence of miR-430. We also show that miR-430 accelerates the deadenylation of target mRNAs. These results suggest that miR-430 facilitates the deadenylation and clearance of maternal mRNAs during early embryogenesis.


Assuntos
Adenosina/metabolismo , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/fisiologia , Polímeros/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição Gênica , Regulação para Cima , Peixe-Zebra/embriologia , Zigoto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA