Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(22): 5337-5352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37394521

RESUMO

Analyzing the composition of (human) urine plays a major role in the fields of biology and medicine. Organic molecules (such as urea, creatine) and ions (such as chloride, sulfate) are the major compounds present in urine, the quantification of which allows for the diagnosis of a subject's health condition. Various analytical methods have been reported for studying urine components and validated on the basis of known and referenced compounds. The present work introduces a new method able to simultaneously determine both major organic molecules and ions contained in urine, by combining ion chromatography using a conductimetric detector with mass spectroscopy. The analysis of organic and ionized compounds (anionic and cationic) was achieved in double injections. For quantification, the standard addition method was used. Human urine samples were pre-treated (diluted and filtered) for IC-CD/MS analysis. The analytes were separated in 35 min. Calibration ranges (0-20 mg.L-1) and correlation coefficients (> 99.3%) as well as detection (LODs < 0.75 mg.L-1) and quantification (LOQs < 2.59 mg.L-1) limits were obtained for the main organic molecules (lactic, hippuric, citric, uric, oxalic acids, urea, creatine, and creatinine) and ions (chloride, sulfate, phosphate, sodium, ammonium, potassium, calcium, and magnesium) contained in urine. The intra- and inter-day accuracies of the analytes consistently ranged from 0.1 to 5.0%, and the precision was within 4.0%. For all analytes, no significant matrix effects were observed, and recoveries ranged from 94.9 to 102.6%. Finally, quantitative results of analytes were obtained from 10 different human urine samples.


Assuntos
Cloretos , Creatina , Humanos , Espectrometria de Massas , Cromatografia , Compostos Orgânicos , Sulfatos , Ureia , Cromatografia Líquida de Alta Pressão/métodos
2.
Water Res ; 146: 77-87, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236467

RESUMO

Treatment combining membrane bioreactors (MBR) and nanofiltration (NF) is becoming an emerging wastewater treatment strategy. The combined process is capable of producing high quality water potentially reusable; however, diverse compositions of MBR effluents induce several types and degrees of NF membrane fouling that impacts process productivity. Moreover, since MBR effluent composition for one type of wastewater source is variable depending on the MBR efficiency at different periods, downstream NF membrane fouling types and degrees may consequently change over time. In that context, the present paper aims at developing effective fouling control strategies of NF membrane in the case of the filtration of MBR effluents taken from a MBR system installed in a French hospital. These effluents were filtrated under various transmembrane pressures, and stable fluxes during these filtrations were determined. Several types and degrees of fouling mechanisms were then identified through surface morphology observation and the analysis of chemical compositions of fouled membranes. The diverse flux behaviour was further associated with the fouling mechanisms and foulant compositions. Based on the study of these mechanisms, the quantitative link between stable fluxes and calcium phosphate concentrations in MBR effluents has been established.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Filtração , Membranas Artificiais , Eliminação de Resíduos Líquidos , Água
3.
Chemosphere ; 204: 163-169, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29655109

RESUMO

This research investigated persulfate electrosynthesis using a boron-doped diamond anode and a chemical reaction of persulfate in its activated form with an herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D). The first part of this research is dedicated to the influence of the applied current density on the electrosynthesis of persulfate. The first part shows that for a 2 M sulfuric acid, the current efficiency reached 96% for 5 mA/cm2 and dropped to 52% for a higher current density (100 mA cm-2). This fall cannot be explained by mass transfer limitations: an increase in temperature (from 9 to 30 °C) during electrolysis leads to the decomposition of 23% of the persulfate. The second part of this research shows that a quasi-complete degradation of the target herbicide can be reached under controlled operating conditions: (i) a high ratio of initial concentrations [Persulfate]/[2,4-D], (ii) a minimum temperature of 60 °C that produces sulfate radicals by heat decomposition of persulfate, and (iii) a sufficient contact time between reactants is required under dynamic conditions.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Eletrólise/métodos , Sulfatos/síntese química , Herbicidas/química , Oxirredução , Sulfatos/química , Temperatura , Poluentes Químicos da Água/química
4.
Front Chem ; 2: 19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818124

RESUMO

A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic "on line" monitoring devices are also evoked.

5.
Chemosphere ; 74(10): 1340-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118859

RESUMO

The electrooxidation of aqueous solutions containing 5mM of o-, m- and p-cresol at pH 4.0 has been investigated using a flow filter-press reactor with a boron-doped diamond (BDD) under galvanostatic electrolysis. All cresols are degraded at similar rate up to attaining overall mineralization. Comparable treatment of the m-cresol effluent on PbO(2) leads to partial electrochemical incineration. However, this pollutant is more rapidly removed with PbO(2) than with BDD. The decay kinetics of all cresols follows a pseudo-first-order reaction. Aromatic intermediates such as 2-methylhydroquinone and 2-methyl-p-benzoquinone and carboxylic acids such as maleic, fumaric, pyruvic, malonic, tartronic, glycolic, glyoxylic, acetic, oxalic and formic, have been identified and followed during the m-cresol treatment by chromatographic techniques. From these oxidation by-products, a plausible reaction sequence for m-cresol mineralization on both anodes is proposed. The energy consumption for the corresponding electrochemical process is also calculated.


Assuntos
Boro/química , Cresóis/química , Diamante/química , Eletroquímica/métodos , Chumbo/química , Óxidos/química , Eletrodos , Incineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA