Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R456-R464, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602382

RESUMO

The active season of hibernators corresponds to rapid adiposity in preparation for the next hibernation season. We have previously shown that this dramatic increase in adipose mass is associated with metabolic inflammation similar to what is seen in obesity and metabolic disease. We next sought to determine whether curbing this inflammation at its source (i.e., the gut) would attenuate weight gain in fattening 13-lined ground squirrels (Ictidomys tridecemlineatus). We fed active yearling ground squirrels a diet containing the gut-specific nonsteroidal anti-inflammatory drug mesalazine (5-aminosalicylic acid) for 10 wk. Mesalazine treatment had slight effects on microbial community diversity in the cecum and colon. Not surprisingly, mesalazine treatment decreased inflammatory cytokine levels in the ileum and colon. Mesalazine also decreased proinflammatory and increased anti-inflammatory cytokines in omental white adipose tissue (oWAT). Despite this, body mass was unaffected, and caloric intake increased in mesalazine-treated squirrels, mainly in males. Mass of the primary WAT depot, intra-abdominal WAT (iaWAT), or the highly metabolic oWAT were unaltered by treatment, as was adiposity index. Together, these results suggest that mesalazine treatment has some effects on adiposity in fattening ground squirrels, but this treatment needs to be modified to overcome the strong drive to fatten in this species.NEW & NOTEWORTHY Adiposity and obesity are caused, at least in part, by inflammation of metabolic tissues. Hibernators, like ground squirrels, undergo this same metabolic inflammation during their summer fattening period. We attempted to curb this inflammation, and thus fattening, using mesalazine. We found that mesalazine did curb the inflammation but did not affect fattening, likely due to the strong drive to fatten in hibernators.

2.
Ecotoxicology ; 32(8): 1062-1083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37874523

RESUMO

Mercury (Hg) pollution remains a concern to Arctic ecosystems, due to long-range transport from southern industrial regions and melting permafrost and glaciers. The objective of this study was to identify intrinsic, extrinsic, and temporal factors influencing Hg concentrations in Arctic-breeding shorebirds and highlight regions and species at greatest risk of Hg exposure. We analyzed 1094 blood and 1384 feather samples from 12 shorebird species breeding at nine sites across the North American Arctic during 2012 and 2013. Blood Hg concentrations, which reflect Hg exposure in the local area in individual shorebirds: 1) ranged from 0.01-3.52 µg/g ww, with an overall mean of 0.30 ± 0.27 µg/g ww; 2) were influenced by species and study site, but not sampling year, with birds sampled near Utqiagvik, AK, having the highest concentrations; and 3) were influenced by foraging habitat at some sites. Feather Hg concentrations, which reflected Hg exposure from the wintering grounds: 1) ranged from 0.07-12.14 µg/g fw in individuals, with an overall mean of 1.14 ± 1.18 µg/g fw; and 2) were influenced by species and year. Most Arctic-breeding shorebirds had blood and feather Hg concentrations at levels where no adverse effects of exposure were predicted, though some individuals sampled near Utqiagvik had Hg levels that would be considered of concern. Overall, these data increase our understanding of how Hg is distributed in the various shorebird breeding areas of the Arctic, what factors predispose Arctic-breeding shorebirds to Hg exposure, and lay the foundation for future monitoring efforts.


Assuntos
Monitoramento Ambiental , Mercúrio , Humanos , Animais , Ecossistema , Aves , Mercúrio/análise , Cruzamento
3.
Appl Environ Microbiol ; 80(6): 1838-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24413599

RESUMO

Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species.


Assuntos
Biota , Campylobacter/isolamento & purificação , Charadriiformes/microbiologia , Trato Gastrointestinal/microbiologia , Helicobacter/isolamento & purificação , Animais , Campylobacter/classificação , Campylobacter/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Delaware , Fezes/microbiologia , Helicobacter/classificação , Helicobacter/genética , Dados de Sequência Molecular , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
4.
mSystems ; 8(2): e0112822, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786579

RESUMO

Shorebirds migrate long distances twice annually, which requires intense physiological and morphological adaptations, including the ability to rapidly gain weight via fat deposition at stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but there is substantial evidence to support the hypothesis that the microbiome is involved with host weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy Turnstones to investigate microbiome composition and function during stopover weight gain in Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome shifts during weight gain, as do functional aspects of the metatranscriptome. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds. IMPORTANCE Many animals migrate long distances annually, and these journeys require intense physiological and morphological adaptations. One such adaptation in shorebirds is the ability to rapidly gain weight at stopover locations in the middle of their migrations. The role of the microbiome in weight gain in birds is unresolved but is likely to play a role. Here, we collected 100 fecal samples from Ruddy Turnstones to investigate microbiome composition (who is there) and function (what they are doing) during stopover weight gain in Delaware Bay, USA. Using multiple molecular methods, we show that both taxonomic composition and function of the microbiome shifts during weight gain. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds.


Assuntos
Charadriiformes , Microbiota , Animais , RNA Ribossômico 16S/genética , Aves , Microbiota/genética , Ácidos Graxos Insaturados , Mamíferos
5.
Front Genet ; 14: 1210143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636260

RESUMO

Obligate seasonal hibernators fast for 5-9 months depending on species yet resist muscle atrophy and emerge with little lean mass loss. The role of the gut microbiome in host nitrogen metabolism during hibernation is therefore of considerable interest, and recent studies support a role for urea nitrogen salvage (UNS) in host-protein conservation. We were interested in the effect of pre-hibernation diet on UNS and the microbial provision of essential amino acids (EAAs) during hibernation; therefore, we conducted a study whereby we fed arctic ground squirrels (Urocitellus parryii) pre-hibernation diets containing 9% vs. 18% protein and compared the expression of gut bacterial urease and amino acid (AA) metabolism genes in 4 gut sections (cecum mucosa, cecum lumen, small intestine [SI] mucosa, and SI lumen) during hibernation. We found that pre-hibernation dietary protein content did not affect expression of complete bacterial AA pathway genes during hibernation; however, several individual genes within EAA pathways were differentially expressed in squirrels fed 18% pre-hibernation dietary protein. Expression of genes associated with AA pathways was highest in the SI and lowest in the cecum mucosa. Additionally, the SI was the dominant expression site of AA and urease genes and was distinct from other sections in its overall microbial functional and taxonomic composition. Urease expression in the gut microbiome of hibernating squirrels significantly differed by gut section, but not by pre-hibernation dietary protein content. We identified two individual genes that are part of the urea cycle and involved in arginine biosynthesis, which were significantly more highly expressed in the cecum lumen and SI mucosa of squirrels fed a pre-hibernation diet containing 18% protein. Six bacterial genera were responsible for 99% of urease gene expression: Cupriavidus, Burkholderia, Laribacter, Bradhyrizobium, Helicobacter, and Yersinia. Although we did not find a strong effect of pre-hibernation dietary protein content on urease or AA metabolism gene expression during hibernation, our data do suggest the potential for pre-hibernation diet to modulate gut microbiota function during hibernation, and further investigations are warranted.

6.
Anim Microbiome ; 5(1): 19, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949549

RESUMO

BACKGROUND: The gut microbiome forms at an early stage, yet data on the environmental factors influencing the development of wild avian microbiomes is limited. As the gut microbiome is a vital part of organismal health, it is important to understand how it may connect to host performance. The early studies with wild gut microbiome have shown that the rearing environment may be of importance in gut microbiome formation, yet the results vary across taxa, and the effects of specific environmental factors have not been characterized. Here, wild great tit (Parus major) broods were manipulated to either reduce or enlarge the original brood soon after hatching. We investigated if brood size was associated with nestling bacterial gut microbiome, and whether gut microbiome diversity predicted survival. Fecal samples were collected at mid-nestling stage and sequenced with the 16S rRNA gene amplicon sequencing, and nestling growth and survival were measured. RESULTS: Gut microbiome diversity showed high variation between individuals, but this variation was not significantly explained by brood size or body mass. Additionally, we did not find a significant effect of brood size on body mass or gut microbiome composition. We also demonstrated that early handling had no impact on nestling performance or gut microbiome. Furthermore, we found no significant association between gut microbiome diversity and short-term (survival to fledging) or mid-term (apparent juvenile) survival. CONCLUSIONS: We found no clear association between early-life environment, offspring condition and gut microbiome. This suggests that brood size is not a significantly contributing factor to great tit nestling condition, and that other environmental and genetic factors may be more strongly linked to offspring condition and gut microbiome. Future studies should expand into other early-life environmental factors e.g., diet composition and quality, and parental influences.

7.
Trends Microbiol ; 30(3): 268-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34393028

RESUMO

Birds harbor complex gut bacterial communities that may sustain their ecologies and facilitate their biological roles, distribution, and diversity. Research on gut microbiomes in wild birds is surging and it is clear that they are diverse and important - but strongly influenced by a series of environmental factors. To continue expanding our understanding of how the internal ecosystems of birds work in their natural settings, we believe the most pressing needs involve studies on the functional and evolutionary aspects of these symbioses. Here we summarize the state of the field and provide a roadmap for future studies on aspects that are pivotal to understanding the biology of avian gut microbiomes, emphasizing prospects for integrating gut microbiome work in avian conservation and host health monitoring.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Evolução Biológica , Aves , Ecossistema
8.
J Hazard Mater ; 424(Pt C): 127598, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798546

RESUMO

Chemical herders and in-situ burning (ISB) are designed to mitigate the effects that oil spills may have on the high latitude marine environment. Little information exists on the water solubilization of petroleum residues stemming from chemically herded ISB and whether these bioavailable compounds have measurable impacts on marine biota. In this experiment, we investigated the effects of Siltech OP40 and crude oil ISB on a) petroleum-derived dissolved organic matter (DOMHC) composition and b) seawater microbial community diversity over 28 days at 4 °C in aquarium-scale mesocosms. Ultra-high resolution mass spectrometry and fluorescence spectroscopy revealed increases in aromaticity over time, with ISB and ISB+OP40 samples having higher % aromatic classes in the initial incubation periods. ISB+OP40 contained a nearly 12-fold increase in the number of DOMHC formulae relative to those before ISB. 16S rRNA gene sequencing identified differences in microbial alpha diversity between seawater, ISB, OP40, and ISB+OP40. Microbial betadiversity shifts were observed that correlated strongly with aromatic/condensed relative abundance and incubation time. Proteobacteria, specifically from the genera Marinomonas and Perlucidibaca experienced -22 and +24 log2-fold changes in ISB+OP40 vs. seawater, respectively. These findings provide an important opportunity to advance our understanding of chemical herders and ISB in the high latitude marine environment.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , RNA Ribossômico 16S/genética , Água do Mar
9.
Anim Microbiome ; 3(1): 56, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389044

RESUMO

BACKGROUND: Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are obligate hibernators and are only active 4-5 months annually. During this period, squirrels rapidly acquire fat for use during hibernation. We investigated how the gut microbiome changed over the active season in the mucosa and lumen of two gut sections: the cecum and ileum. We sequenced the 16S rRNA gene to assess diversity and composition of the squirrel gut microbiome and used differential abundance and network analyses to identify relationships among gut sections. RESULTS: Microbial composition significantly differed between the cecum and ileum, and within the ileum between the mucosa and lumen. Cecum mucosa and lumen samples did not differ in alpha diversity and composition, and clustered by individual squirrel. Ileum mucosa and lumen samples differed in community composition, which can likely be attributed to the transient nature of food-associated bacteria in the lumen. We did not detect a shift in microbiome diversity and overall composition over the duration of the active season, indicating that the squirrel microbiome may be relatively robust to changes in physiology. CONCLUSIONS: Overall, we found that the 13-lined ground squirrel microbiome is shaped by microenvironment during the active season. Our results provide baseline data for new avenues of research, such as investigating potential differences in microbial function among these physiologically unique gut environments.

10.
R Soc Open Sci ; 7(1): 191609, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218980

RESUMO

The gastrointestinal tract (GIT) consists of connected structures that vary in function and physiology, and different GIT sections potentially provide different habitats for microorganisms. Birds possess unique GIT structures, including the oesophagus, proventriculus, gizzard, small intestine, caeca and large intestine. To understand birds as hosts of microbial ecosystems, we characterized the microbial communities in six sections of the GIT of two shorebird species, the Dunlin and Semipalmated Sandpiper, identified potential host species effects on the GIT microbiome and used microbial source tracking to determine microbial origin throughout the GIT. The upper three GIT sections had higher alpha diversity and genus richness compared to the lower sections, and microbial communities in the upper GIT showed no clustering. The proventriculus and gizzard microbiomes primarily originated from upstream sections, while the majority of the large intestine microbiome originated from the caeca. The heterogeneity of the GIT sections shown in our study urges caution in equating data from faeces or a single GIT component to the entire GIT microbiome but confirms that ecologically similar species may share many attributes in GIT microbiomes.

11.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730167

RESUMO

Phylosymbiosis refers to a congruent pattern between the similarity of microbiomes of different species and the branching pattern of the host phylogeny. Phylosymbiosis has been detected in a variety of vertebrate and invertebrate hosts, but has only been assessed in geographically isolated populations. We tested for phylosymbiosis in eight (sub)species of western chipmunks with overlapping ranges and ecological niches; we used a nuclear (Acrosin) and a mitochondrial (CYTB) phylogenetic marker because there are many instances of mitochondrial introgression in chipmunks. We predicted that similarity among microbiomes increases with: (1) increasing host mitochondrial relatedness, (2) increasing host nuclear genome relatedness and (3) decreasing geographic distance among hosts. We did not find statistical evidence supporting phylosymbiosis in western chipmunks. Furthermore, in contrast to studies of other mammalian microbiomes, similarity of chipmunk microbiomes is not predominantly determined by host species. Sampling site explained most variation in microbiome composition, indicating an important role of local environment in shaping microbiomes. Fecal microbiomes of chipmunks were dominated by Bacteroidetes (72.2%), followed by Firmicutes (24.5%), which is one of the highest abundances of Bacteroidetes detected in wild mammals. Future work will need to elucidate the effects of habitat, ecology and host genomics on chipmunk microbiomes.


Assuntos
Microbiota , Filogenia , Sciuridae/classificação , Sciuridae/microbiologia , Acrosina/genética , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Citocromos b/genética , Fezes/microbiologia , Introgressão Genética , Mamíferos/classificação , Mamíferos/genética , Mamíferos/microbiologia , Sciuridae/genética
12.
PLoS One ; 14(7): e0220347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335887

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0217804.].

13.
PLoS One ; 14(6): e0217804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31206549

RESUMO

Probiotics are bacterial species or assemblages that are applied to animals and plants with the intention of altering the microbiome in a beneficial way. Probiotics have been linked to positive health effects such as faster disease recovery times in humans and increased weight gain in poultry. Pigeon fanciers often feed their show pigeons probiotics with the intention of increasing flight performance. The objective of our study was to determine the effect of two different probiotics, alone and in combination, on the fecal microbiome of Birmingham Roller pigeons. We sequenced fecal samples from 20 pigeons divided into three probiotic treatments, including prior to, during, and after treatment. Pre-treatment and control group samples were dominated by Actinobacteria, Firmicutes, Proteobacteria, and Cyanobacteria. Administration of a probiotic pellet containing Enterococcus faecium and Lactobacillus acidophilus resulted in increase in average relative abundance of Lactobacillus spp. from 4.7 ± 2.0% to 93.0 ± 5.3%. No significant effects of Enterococcus spp. were detected. Probiotic-induced shifts in the microbiome composition were temporary and disappeared within 2 days of probiotic cessation. Administration of a probiotic powder in drinking water that contained Enterococcus faecium and three Lactobacillus species had minimal effect on the microbiome. We conclude that supplementing Birmingham roller pigeons with the probiotic pellets, but not the probiotic powder, temporarily changed the microbiome composition. A next step is to experimentally test the effect of these changes in microbiome composition on host health and physical performance.


Assuntos
Columbidae/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Probióticos/farmacologia , Ração Animal , Animais , Enterococcus faecium , Lactobacillus acidophilus , Probióticos/uso terapêutico , Fatores de Tempo
14.
Ecol Evol ; 9(11): 6693-6707, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236253

RESUMO

The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well-documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7-year study near Utqiagvik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic-breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic-breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2-10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap-1 day-1 among years in eight species), and was often inadequate for average growth (only 20%-54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4-year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long-term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey.

15.
Front Microbiol ; 10: 2258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649627

RESUMO

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

16.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069418

RESUMO

Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird chicks are likely void of microbiota prior to hatch, but that stable gut microbiome establishes as early as 3 days of age, probably from environmental inocula.


Assuntos
Bactérias/isolamento & purificação , Aves/microbiologia , Microbioma Gastrointestinal , Animais , Animais Selvagens/microbiologia , Regiões Árticas , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Fezes/microbiologia , Filogenia , RNA Ribossômico 16S/genética
17.
PeerJ ; 3: e1125, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290790

RESUMO

Sanderlings (Calidris alba) are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual basis, the higher energy expenditures during migration might pay off if food availability in the tropics is higher than at temperate latitudes. We compared foraging behaviour of birds at a north temperate and a tropical non-breeding site in the Netherlands and Ghana, respectively. In both cases the birds used similar habitats (open beaches), and experienced similar periods of daylight, which enabled us to compare food abundance and availability, and behavioural time budgets and food intake. During the non-breeding season, Sanderlings in the Netherlands spent 79% of their day foraging; in Ghana birds spent only 38% of the daytime period foraging and the largest proportion of their time resting (58%). The main prey item in the Netherlands was the soft-bodied polychaete Scolelepis squamata, while Sanderlings in Ghana fed almost exclusively on the bivalve Donax pulchellus, which they swallowed whole and crushed internally. Average availability of polychaete worms in the Netherlands was 7.4 g ash free dry mass (AFDM) m(-2), which was one tenth of the 77.1 g AFDM m(-2) estimated for the beach in Ghana. In the tropical environment of Ghana the Sanderlings combined relatively low energy requirements with high prey intake rates (1.64 mg opposed to 0.13 mg AFDM s(-1) for Ghana and the Netherlands respectively). Although this may suggest that the Ghana beaches are the most favourable environment, processing the hard-shelled bivalve (D. pulchellus) which is the staple food could be costly. The large amount of daytime spent resting in Ghana may be indicative of the time needed to process the shell fragments, rather than indicate rest.

18.
PLoS One ; 6(2): e16834, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21347377

RESUMO

Birds breeding in cold environments regularly have to interrupt incubation to forage, causing a trade-off between two mutually exclusive behaviours. Earlier studies showed that uniparental Arctic sandpipers overall spend less time incubating their eggs than biparental species, but interspecific differences in size and ecology were potential confounding factors. This study reports on a within-species comparison of breeding schedules and metal egg temperatures in uni- and biparental sanderlings (Calidris alba) in Northeast Greenland in relation to ambient temperature. We recorded incubation schedules with nest temperature loggers in 34 sanderling clutches (13 uniparentals, 21 biparentals). The temperature of a metal egg placed within the clutch of 17 incubating birds (6 uniparentals, 9 biparentals) was measured as an indicator of the heat put into eggs. Recess frequency, recess duration and total recess time were higher in uniparentals than in biparentals and positively correlated with ambient temperatures in uniparentals only. Uniparental sanderlings maintained significantly higher metal egg temperatures during incubation than biparentals (1.4°C difference on average). Our results suggest that uniparental sanderlings compensate for the lower nest attendance, which may prolong the duration of the incubation period and negatively affect the condition of the hatchlings, by maintaining a higher heat flux into the eggs.


Assuntos
Charadriiformes , Comportamento de Nidação , Óvulo , Temperatura , Animais , Regiões Árticas , Evolução Biológica , Cruzamento , Charadriiformes/genética , Charadriiformes/fisiologia , Feminino , Masculino , Metais , Reprodução , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA