Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654140

RESUMO

Single-photon emitters serve as building blocks for many emerging concepts in quantum photonics. The recent identification of bright, tunable and stable emitters in hexagonal boron nitride (hBN) has opened the door to quantum platforms operating across the infrared to ultraviolet spectrum. Although it is widely acknowledged that defects are responsible for single-photon emitters in hBN, crucial details regarding their origin, electronic levels and orbital involvement remain unknown. Here we employ a combination of resonant inelastic X-ray scattering and photoluminescence spectroscopy in defective hBN, unveiling an elementary excitation at 285 meV that gives rise to a plethora of harmonics correlated with single-photon emitters. We discuss the importance of N π* anti-bonding orbitals in shaping the electronic states of the emitters. The discovery of elementary excitations in hBN provides fundamental insights into quantum emission in low-dimensional materials, paving the way for future investigations in other platforms.

2.
Nano Lett ; 22(7): 3087-3094, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35290068

RESUMO

Transition-metal dichalcogenides (TMDs) are layered materials that have a semiconducting phase with many advantageous optoelectronic properties, including tightly bound excitons and spin-valley locking. In tungsten-based TMDs, spin- and momentum-forbidden transitions give rise to dark excitons that typically are optically inaccessible but represent the lowest excitonic states of the system. Dark excitons can deeply affect the transport, dynamics, and coherence of bright excitons, hampering device performance. Therefore, it is crucial to create conditions in which these excitonic states can be visualized and controlled. Here, we show that compressive strain in WS2 enables phonon scattering of photoexcited electrons between momentum valleys, enhancing the formation of dark intervalley excitons. We show that the emission and spectral properties of momentum-forbidden excitons are accessible and strongly depend on the local strain environment that modifies the band alignment. This mechanism is further exploited for strain sensing in two-dimensional semiconductors, revealing a gauge factor exceeding 104.


Assuntos
Semicondutores , Elementos de Transição , Movimento (Física) , Fônons , Tungstênio
3.
Nano Lett ; 20(9): 6791-6797, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790415

RESUMO

The ability to control excitons in semiconductors underlies numerous proposed applications, from excitonic circuits to energy transport. Two dimensional (2D) semiconductors are particularly promising for room-temperature applications due to their large exciton binding energy and enormous stretchability. Although the strain-induced static exciton flux has been observed in predetermined structures, dynamic control of exciton flux represents an outstanding challenge. Here, we introduce a method to tune the bandgap of suspended 2D semiconductors by applying a local strain gradient with a nanoscale tip. This strain allows us to locally and reversibly shift the exciton energy and to steer the exciton flux over micrometer-scale distances. We anticipate that our result not only marks an important experimental tool but will also open a broad range of new applications from information processing to energy conversion.

4.
Nat Commun ; 14(1): 3712, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349290

RESUMO

The growing field of quantum information technology requires propagation of information over long distances with efficient readout mechanisms. Excitonic quantum fluids have emerged as a powerful platform for this task due to their straightforward electro-optical conversion. In two-dimensional transition metal dichalcogenides, the coupling between spin and valley provides exciting opportunities for harnessing, manipulating, and storing bits of information. However, the large inhomogeneity of single layers cannot be overcome by the properties of bright excitons, hindering spin-valley transport. Nonetheless, the rich band structure supports dark excitonic states with strong binding energy and longer lifetime, ideally suited for long-range transport. Here we show that dark excitons can diffuse over several micrometers and prove that this repulsion-driven propagation is robust across non-uniform samples. The long-range propagation of dark states with an optical readout mediated by chiral phonons provides a new concept of excitonic devices for applications in both classical and quantum information technology.


Assuntos
Ciência da Informação , Fônons , Tecnologia da Informação , Meio Ambiente , Semicondutores
5.
J Phys Chem Lett ; 11(4): 1330-1335, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32017564

RESUMO

Quantum emitters capable of producing single photons on-demand with high color purity are the building blocks of emerging schemes in secure quantum communications, quantum computing, and quantum metrology. Such solid-state systems, however, are usually prone to effects of spectral diffusion (SD), i.e., fast modulation of the emission wavelength due to the presence of localized, fluctuating electric fields. Two-dimensional materials are especially vulnerable to SD by virtue of the proximity of the emitters to the outside environment. In this study we report measurements of SD in a single hexagonal boron nitride (hBN) quantum emitter on the nanosecond to second time scales using photon correlation Fourier spectroscopy. We demonstrate that the spectral diffusion dynamics can be modeled by a two-component Gaussian random jump model, suggesting multiple sources of local fluctuations. We provide a lower limit of ∼0.13 for the ratio of the emitter's coherence time (T2) to twice its radiative lifetime (2T1) when it is measured on submicrosecond time scales. These results suggest that attaining transform-limited line widths could be achieved with moderate enhancement of the radiative rate. Moreover, the complex SD dynamics identified in our work inspires further exploration of the dephasing mechanisms in hBN as a viable quantum emitter platform.

6.
Nat Nanotechnol ; 13(9): 797-801, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29892017

RESUMO

High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron-phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths1-3. Moreover, the material's light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz-1/2, a record fast thermal relaxation time, <35 ps, and an improved light absorption. However the device can operate even above 300 K with reduced sensitivity. We work out the performance mechanisms and limits of the graphene bolometer and give important insights towards the potential development of practical applications.

7.
Nat Commun ; 8(1): 705, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951591

RESUMO

Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 106 counts per second at saturation, after correcting for uncorrelated photon background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.Inhomogeneous spectral distribution and multi-photon emission are currently hindering the use of defects in layered hBN as reliable single photon emitters. Here, the authors demonstrate strain-controlled wavelength tuning and increased single photon purity through suitable material processing.

8.
Nat Nanotechnol ; 12(12): 1124-1129, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29209014

RESUMO

One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

9.
ACS Nano ; 10(8): 7331-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27399936

RESUMO

Hexagonal boron nitride (hBN) is an emerging two-dimensional material for quantum photonics owing to its large bandgap and hyperbolic properties. Here we report two approaches for engineering quantum emitters in hBN multilayers using either electron beam irradiation or annealing and characterize their photophysical properties. The defects exhibit a broad range of multicolor room-temperature single photon emissions across the visible and the near-infrared spectral ranges, narrow line widths of sub-10 nm at room temperature, and a short excited-state lifetime, and high brightness. We show that the emitters can be categorized into two general groups, but most likely possess similar crystallographic structure. Remarkably, the emitters are extremely robust and withstand aggressive annealing treatments in oxidizing and reducing environments. Our results constitute a step toward deterministic engineering of single emitters in 2D materials and hold great promise for the use of defects in boron nitride as sources for quantum information processing and nanophotonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA