RESUMO
Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.
Assuntos
Extremidades , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , RNA Longo não Codificante/genética , Deleção de Sequência/genética , Transcrição Gênica , Ativação Transcricional/genética , Animais , Linhagem Celular , Cromatina/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos TransgênicosRESUMO
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo. We found that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in lung fibroblasts. We biophysically confirmed the formation of an RNA:dsDNA triplex with target promoters in vitro. We found that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
Assuntos
Fibrose Pulmonar , RNA Longo não Codificante , Animais , Camundongos , Fibrose , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , RNA Longo não Codificante/metabolismoRESUMO
Long non-coding RNAs (lncRNAs) are important regulators of gene expression and can associate with DNA as RNA : DNA heteroduplexes or RNA â DNA : DNA triple helix structures. Here, we review inâ vitro biochemical and biophysical experiments including electromobility shift assays (EMSA), circular dichroism (CD) spectroscopy, thermal melting analysis, microscale thermophoresis (MST), single-molecule Förster resonance energy transfer (smFRET) and nuclear magnetic resonance (NMR) spectroscopy to investigate RNA â DNA : DNA triple helix and RNA : DNA heteroduplex formation. We present the investigations of the antiparallel triplex-forming lncRNA MEG3 targeting the gene TGFB2 and the parallel triplex-forming lncRNA Fendrr with its target gene Emp2. The thermodynamic properties of these oligonucleotides lead to concentration-dependent heterogeneous mixtures, where a DNA duplex, an RNA : DNA heteroduplex and an RNA â DNA : DNA triplex coexist and their relative populations are modulated in a temperature-dependent manner. The inâ vitro data provide a reliable readout of triplex structures, as RNA â DNA : DNA triplexes show distinct features compared to DNA duplexes and RNA : DNA heteroduplexes. Our experimental results can be used to validate computationally predicted triple helix formation between novel disease-relevant lncRNAs and their DNA target genes.
Assuntos
DNA , Conformação de Ácido Nucleico , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , DNA/química , DNA/genética , Humanos , Ácidos Nucleicos Heteroduplexes/química , RNA/química , RNA/genética , RNA/metabolismo , TermodinâmicaRESUMO
BACKGROUND: Circular RNAs (circRNAs) are generated by back splicing of mostly mRNAs and are gaining increasing attention as a novel class of regulatory RNAs that control various cellular functions. However, their physiological roles and functional conservation in vivo are rarely addressed, given the inherent challenges of their genetic inactivation. Here, we aimed to identify locus conserved circRNAs in mice and humans, which can be genetically deleted due to retained intronic elements not contained in the mRNA host gene to eventually address functional conservation. METHODS AND RESULTS: Combining published endothelial RNA-sequencing data sets with circRNAs of the circATLAS databank, we identified locus-conserved circRNA retaining intronic elements between mice and humans. CRISPR/Cas9 mediated genetic depletion of the top expressed circRNA cZfp292 resulted in an altered endothelial morphology and aberrant flow alignment in the aorta in vivo. Consistently, depletion of cZNF292 in endothelial cells in vitro abolished laminar flow-induced alterations in cell orientation, paxillin localization and focal adhesion organization. Mechanistically, we identified the protein SDOS (syndesmos) to specifically interact with cZNF292 in endothelial cells by RNA-affinity purification and subsequent mass spectrometry analysis. Silencing of SDOS or its protein binding partner Syndecan-4, or mutation of the SDOS-cZNF292 binding site, prevented laminar flow-induced cytoskeletal reorganization thereby recapitulating cZfp292 knockout phenotypes. CONCLUSIONS: Together, our data reveal a hitherto unknown role of cZNF292/cZfp292 in endothelial flow responses, which influences endothelial shape.
Assuntos
Proteínas de Ligação a DNA , Células Endoteliais , Endotélio Vascular , RNA Circular , Fatores de Transcrição , Animais , Humanos , Camundongos , Circulação Sanguínea , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Circular/genética , RNA Circular/metabolismo , Sindecana-4/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.
Assuntos
Sistema Cardiovascular , Sistema Urinário , Gravidez , Feminino , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Variações do Número de Cópias de DNA , Morfolinos , Sistema Urinário/anormalidades , Sistema Nervoso CentralRESUMO
Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.
Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Doenças Fetais/genética , Mutação , Obstrução do Colo da Bexiga Urinária/congênito , Obstrução do Colo da Bexiga Urinária/genética , Adulto , Animais , Criança , Feminino , Doenças Fetais/patologia , Genes Dominantes , Idade Gestacional , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Gravidez , Obstrução do Colo da Bexiga Urinária/patologia , Peixe-ZebraRESUMO
BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.
Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Hipertrófica/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.
Assuntos
Desenvolvimento Embrionário/genética , Proteínas Fetais/genética , Histonas/metabolismo , Mesoderma/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Linhagem da Célula/genética , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Mutação Puntual , Ligação Proteica , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
RATIONALE: Pericytes are essential for vessel maturation and endothelial barrier function. Long noncoding RNAs regulate many cellular functions, but their role in pericyte biology remains unexplored. OBJECTIVE: Here, we investigate the effect of hypoxia-induced endoplasmic reticulum stress regulating long noncoding RNAs (HypERlnc, also known as ENSG00000262454) on pericyte function in vitro and its regulation in human heart failure and idiopathic pulmonary arterial hypertension. METHODS AND RESULTS: RNA sequencing in human primary pericytes identified hypoxia-regulated long noncoding RNAs, including HypERlnc. Silencing of HypERlnc decreased cell viability and proliferation and resulted in pericyte dedifferentiation, which went along with increased endothelial permeability in cocultures consisting of human primary pericyte and human coronary microvascular endothelial cells. Consistently, Cas9-based transcriptional activation of HypERlnc was associated with increased expression of pericyte marker genes. Moreover, HypERlnc knockdown reduced endothelial-pericyte recruitment in Matrigel assays (P<0.05). Mechanistically, transcription factor reporter arrays demonstrated that endoplasmic reticulum stress-related transcription factors were prominently activated by HypERlnc knockdown, which was confirmed via immunoblotting for the endoplasmic reticulum stress markers IRE1α (P<0.001), ATF6 (P<0.01), and soluble BiP (P<0.001). Kyoto encyclopedia of genes and gene ontology pathway analyses of RNA sequencing experiments after HypERlnc knockdown indicate a role in cardiovascular disease states. Indeed, HypERlnc expression was significantly reduced in human cardiac tissue from patients with heart failure (P<0.05; n=19) compared with controls. In addition, HypERlnc expression significantly correlated with pericyte markers in human lungs derived from patients diagnosed with idiopathic pulmonary arterial hypertension and from donor lungs (n=14). CONCLUSIONS: Here, we show that HypERlnc regulates human pericyte function and the endoplasmic reticulum stress response. In addition, RNA sequencing analyses in conjunction with reduced expression of HypERlnc in heart failure and correlation with pericyte markers in idiopathic pulmonary arterial hypertension indicate a role of HypERlnc in human cardiopulmonary disease.
Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Células Endoteliais/metabolismo , Pericitos/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Sequência de Bases , Hipóxia Celular/fisiologia , Técnicas de Cocultura , Células Endoteliais/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/patologia , RNA Longo não Codificante/genética , Distribuição AleatóriaRESUMO
A large proportion of the cellular transcriptome of higher vertebrates consists of non-protein coding transcripts, among them the long noncoding RNAs (lncRNAs). Although lncRNAs are functionally extremely divergent, many ncRNAs have been shown to interact with chromatin modifying complexes and/or with transcriptional regulators. Via such interactions, many lncRNAs are involved in controlling the activity and expression level of target genes, including important regulators of embryonic processes, and thereby fine-tune gene regulatory networks controlling cell fate, lineage balance, and organogenesis. Intriguingly, an increase in organ complexity during evolution parallels a rise in lncRNA abundance. The current data suggest that lncRNAs support the generation of cell diversity and organ complexity during embryogenesis, and thereby have promoted the evolution of more complex organisms.
Assuntos
Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Organogênese/genética , RNA Longo não Codificante/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos GenéticosRESUMO
Differential gene expression is a prerequisite for the formation of multiple cell types from the fertilized egg during embryogenesis. Understanding the gene regulatory networks controlling cellular differentiation requires the identification of crucial differentially expressed control genes and, ideally, the determination of the complete transcriptomes of each individual cell type. Here, we have analyzed the transcriptomes of six major tissues dissected from mid-gestational (TS12) mouse embryos. Approximately one billion reads derived by RNA-seq analysis provided extended transcript lengths, novel first exons and alternative transcripts of known genes. We have identified 1375 genes showing tissue-specific expression, providing gene signatures for each of the six tissues. In addition, we have identified 1403 novel putative long noncoding RNA gene loci, 439 of which show differential expression. Our analysis provides the first complete transcriptome data for the mouse embryo. It offers a rich data source for the analysis of individual genes and gene regulatory networks controlling mid-gestational development.
Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA não Traduzido/genética , Transcriptoma , Processamento Alternativo , Animais , Embrião de Mamíferos , Éxons , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Distribuição TecidualRESUMO
Presomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells. Here we show that the activation of WNT signaling by CHIR99021 (CH) in combination with FGF ligand induces embryo-like PSM at high efficiency. By varying the FGF ligand concentration, the state of PSM cells formed can be altered. High FGF concentration supports posterior PSM formation, whereas low FGF generates anterior/differentiating PSM, in line with in vivo data. Furthermore, the level of Msgn1 expression depends on the FGF ligand concentration. We also show that Activin/Nodal signaling inhibits CH-mediated PSM induction in EpiSCs, without affecting T-expression. Inversely, Activin/Nodal inhibition enhances PSM induction by WNT/high FGF signaling. The ability to generate PSM cells of either posterior or anterior PSM identity with high efficiency in vitro will promote the investigation of the gene regulatory networks controlling the formation of nascent PSM cells and their switch to differentiating/somitic paraxial mesoderm. Stem Cells 2016;34:1790-1800.
Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Mesoderma/embriologia , Somitos/embriologia , Proteínas Wnt/metabolismo , Ativinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ligantes , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Somitos/citologiaRESUMO
Since decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability. Recent findings implicate lncRNAs as key players of cellular differentiation, cell lineage choice, organogenesis and tissue homeostasis. Moreover, lncRNAs are involved in pathological conditions such as cancer and cardiovascular disease, and therefore provide novel biomarkers and pharmaceutical targets. Here we discuss examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease.
Assuntos
Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Código das Histonas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , RNA Longo não Codificante/análise , RNA Longo não Codificante/metabolismoRESUMO
While the vast majority of the genome is transcribed into RNA, only a small fraction of these transcripts have protein-coding potential. A large fraction of the transcribed RNA belongs to the class known as long non-coding RNAs (lncRNAs). Several recent studies have shown that at least some of these lncRNA transcripts represent functional RNA molecules. LncRNAs can utilize a wide range of mechanisms to regulate the RNA and/or the protein content of a cell on the transcriptional and the post-transcriptional levels. So far, many studies have identified differentially expressed lncRNAs in various physiological contexts, genetic disorders and human diseases. A steadily increasing number of studies could establish functional roles for some of these lncRNAs in developmental processes, cancer and tissue homeostasis. Taken together, these functions provide an additional layer of gene regulation and contribute to the high complexity of physiological and disease-related phenotypes.
Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Impressão Genômica , Humanos , Agregação Patológica de Proteínas/genética , RNA Longo não Codificante/metabolismoRESUMO
Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.
Assuntos
Adenoma/genética , Neoplasias do Colo/genética , Metilação de DNA/genética , Neoplasias Intestinais/genética , Proteínas do Grupo Polycomb/genética , Adenoma/patologia , Animais , Sequência de Bases , Ilhas de CpG/genética , Epigenômica , Genoma , Humanos , Neoplasias Intestinais/patologia , Camundongos , SinteniaAssuntos
Doenças Cardiovasculares/terapia , Terapia Genética/métodos , RNA Longo não Codificante/genética , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Terapia Genética/normas , Humanos , Guias de Prática Clínica como Assunto , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêuticoRESUMO
Cells counteract oxidative stress by altering metabolism, cell cycle and gene expression. However, the mechanisms that coordinate these adaptations are only marginally understood. Here we provide evidence that timing of these responses in yeast requires export of the polyamines spermidine and spermine. We show that during hydrogen peroxide (H2O2) exposure, the polyamine transporter Tpo1 controls spermidine and spermine concentrations and mediates induction of antioxidant proteins, including Hsp70, Hsp90, Hsp104 and Sod1. Moreover, Tpo1 determines a cell cycle delay during adaptation to increased oxidant levels, and affects H2O2 tolerance. Thus, central components of the stress response are timed through Tpo1-controlled polyamine export.
Assuntos
Antiporters/metabolismo , Pontos de Checagem do Ciclo Celular , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espermina/metabolismo , Antiporters/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/toxicidade , Proteínas de Transporte de Cátions Orgânicos/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de TempoRESUMO
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
RESUMO
Epigenetic control mechanisms determine active and silenced regions of the genome. It is known that the Polycomb Repressive Complex 2 (PRC2) and the Trithorax group/Mixed lineage leukemia (TrxG/Mll) complex are able to set repressive and active histone marks, respectively. Long non-coding RNAs (lncRNAs) can interact with either of these complexes and guide them to regulatory elements, thereby modifying the expression levels of target genes. The lncRNA Fendrr is transiently expressed in lateral mesoderm of mid-gestational mouse embryos and was shown to interact with both PRC2 and TrxG/Mll complexes in vivo. Gene targeting revealed that loss of Fendrr results in impaired differentiation of tissues derived from lateral mesoderm, the heart and the body wall, ultimately leading to embryonic death. Molecular data suggests that Fendrr acts via dsDNA/RNA triplex formation at target regulatory elements, and directly increases PRC2 occupancy at these sites. This, in turn, modifies the ratio of repressive to active marks, adjusting the expression levels of Fendrr target genes in lateral mesoderm. We propose that Fendrr also mediates long-term epigenetic marks to define expression levels of its target genes within the descendants of lateral mesoderm cells. Here we discuss approaches for lncRNA gene knockouts in the mouse, and suggest a model how Fendrr and possibly other lncRNAs act during embryogenesis.
Assuntos
Desenvolvimento Embrionário , Redes Reguladoras de Genes , RNA Longo não Codificante/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Camundongos , Especificidade de Órgãos , TranscriptomaRESUMO
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.