RESUMO
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.
Assuntos
Evolução Molecular , Flaviviridae , Glicoproteínas , Filogenia , Proteínas do Envelope Viral , Animais , Humanos , Flaviviridae/química , Flaviviridae/classificação , Glicoproteínas/química , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Modelos Moleculares , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/metabolismoRESUMO
It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.
Assuntos
Genoma Viral , Animais , Filogenia , Tamanho do Genoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Exonucleases/metabolismo , Exonucleases/genética , RNA Viral/genéticaRESUMO
Viruses capable of causing persistent infection have developed sophisticated mechanisms for evading host immunity, and understanding these processes can reveal novel features of the host immune system. One such virus, human pegivirus (HPgV), infects ~15% of the global human population, but little is known about its biology beyond the fact that it does not cause overt disease. We passaged a pegivirus isolate of feral brown rats (RPgV) in immunodeficient laboratory mice to develop a mouse-adapted virus (maPgV) that established persistent high-titer infection in a majority of wild-type laboratory mice. maRPgV viremia was detected in the blood of mice for >300 days without apparent disease, closely recapitulating the hallmarks of HPgV infection in humans. We found a pro-viral role for type-I interferon in chronic infection; a lack of PD-1-mediated tolerance to PgV infection; and multiple mechanisms by which PgV immunity can be achieved by an immunocompetent host. These data indicate that the PgV immune evasion strategy has aspects that are both common and unique among persistent viral infections. The creation of maPgV represents the first PgV infection model in wild-type mice, thus opening the entire toolkit of the mouse host to enable further investigation of this persistent RNA virus infections.
Assuntos
Infecções por Flaviviridae , Flaviviridae , Animais , Camundongos , Infecções por Flaviviridae/virologia , Infecções por Flaviviridae/imunologia , Flaviviridae/genética , Flaviviridae/imunologia , Infecção Persistente/imunologia , Infecção Persistente/virologia , Ratos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , HumanosRESUMO
Enveloped viruses encode specialised glycoproteins that mediate fusion of viral and host membranes. Discovery and understanding of the molecular mechanisms of fusion have been achieved through structural analyses of glycoproteins from many different viruses, and yet the fusion mechanisms of some viral genera remain unknown. We have employed systematic genome annotation and AlphaFold modelling to predict the structures of the E1E2 glycoproteins from 60 viral species in the Hepacivirus, Pegivirus, and Pestivirus genera. While the predicted structure of E2 varied widely, E1 exhibited a very consistent fold across genera, despite little or no similarity at the sequence level. Critically, the structure of E1 is unlike any other known viral glycoprotein. This suggests that the Hepaci-, Pegi-, and Pestiviruses may possess a common and novel membrane fusion mechanism. Comparison of E1E2 models from various species reveals recurrent features that are likely to be mechanistically important and sheds light on the evolution of membrane fusion in these viral genera. These findings provide new fundamental understanding of viral membrane fusion and are relevant to structure-guided vaccinology.
Assuntos
Fusão de Membrana , Pestivirus , Hepacivirus/genética , Pestivirus/genéticaRESUMO
Entry of SARS-CoV-2 into human respiratory cells, mediated by the spike protein, is absolutely dependent on the cellular receptor ACE2 (angiotensin-converting enzyme-2). This makes ACE2 an attractive target for therapeutic intervention in COVID-19. In this issue, Zuo et al. discover that vitamin C, an essential nutrient and common dietary supplement, can target ACE2 for ubiquitin-dependent degradation, resulting in the inhibition of SARS-CoV-2 infection (Zuo et al, 2023). The study identifies novel mechanisms of cellular ACE2 regulation and may inform the design of therapeutics targeting SARS-2 and related coronaviruses.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2 , Ligação ProteicaRESUMO
Due to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the Hepacivirus genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV). GBV-B-pseudotyped viral particles (GBVBpp) were shown to be uniquely sensitive to the sera of tamarins infected with GBV-B, validating their usefulness as a surrogate for GBV-B entry studies. We screened GBVBpp infection of human hepatoma cell lines that were CRISPR/Cas9 engineered to ablate the expression of individual HCV receptors/entry factors and found that claudin-1 is essential for GBV-B infection, indicating the GBV-B and HCV share an entry factor. Our data suggest that claudin-1 facilitates HCV and GBV-B entry through distinct mechanisms since the former requires the first extracellular loop and the latter is reliant on a C-terminal region containing the second extracellular loop. The observation that claudin-1 is an entry factor shared between these two hepaciviruses suggests that the tight junction protein is of fundamental mechanistic importance during cell entry. IMPORTANCE Hepatitis C virus (HCV) is a major public health burden; approximately 58 million individuals have chronic HCV infection and are at risk of developing cirrhosis and liver cancer. To achieve the World Health Organization's target of eliminating hepatitis by 2030, new therapeutics and vaccines are needed. Understanding how HCV enters cells can inform the design of new vaccines and treatments targeting the first stage of infection. However, the HCV cell entry mechanism is complex and has been sparsely described. Studying the entry of related hepaciviruses will increase the knowledge of the molecular mechanisms of the first stages of HCV infection, such as membrane fusion, and inform structure-guided HCV vaccine design; in this work, we have identified a protein, claudin-1, that facilitates the entry of an HCV-related hepacivirus but with a mechanism not described for HCV. Similar work on other hepaciviruses may unveil a commonality of entry factors and, possibly, new mechanisms.
Assuntos
Vírus GB B , Hepatite C , Animais , Humanos , Hepacivirus/genética , Claudina-1/genéticaRESUMO
The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease.
Assuntos
Colesterol/metabolismo , Hepacivirus/metabolismo , Hepatite C/virologia , Receptores Virais/metabolismo , Tetraspanina 28/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Cricetinae , Hepacivirus/isolamento & purificação , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Camundongos , Mutagênese Sítio-Dirigida/métodos , Elementos Estruturais de ProteínasRESUMO
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Afinidade de Anticorpos , Técnicas de Silenciamento de Genes , Células HEK293 , Hepacivirus/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Antígenos da Hepatite C/metabolismo , Humanos , Manose/química , Polissacarídeos/química , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologiaRESUMO
The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.
Assuntos
Hepatite C/virologia , Proteínas do Envelope Viral/química , Internalização do Vírus , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Simulação por Computador , Epitopos/imunologia , Glicosilação , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Espalhamento de Radiação , Raios XRESUMO
The mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood. Here we describe a novel computational model of viral entry, encompassing the relationship between HCV and the key host receptors CD81 and SR-B1. We conduct experiments to thoroughly quantify the influence of an increase or decrease in receptor availability upon the extent of viral entry. We use these data to build and parameterise a mathematical model, which we then validate by further experiments. Our results are consistent with sequential HCV-receptor interactions, whereby initial interaction between the HCV E2 glycoprotein and SR-B1 facilitates the accumulation CD81 receptors, leading to viral entry. However, we also demonstrate that a small minority of viruses can achieve entry in the absence of SR-B1. Our model estimates the impact of the different obstacles that viruses must surmount to achieve entry; among virus particles attaching to the cell surface, around one third of viruses accumulate sufficient CD81 receptors, of which 4-8% then complete the subsequent steps to achieve productive infection. Furthermore, we make estimates of receptor stoichiometry; in excess of 10 receptors are likely to be required to achieve viral entry. Our model provides a tool to investigate the entry characteristics of HCV variants and outlines a framework for future quantitative studies of the multi-receptor dynamics of HCV entry.
Assuntos
Hepacivirus/química , Hepacivirus/fisiologia , Hepatite C/virologia , Modelos Moleculares , Linhagem Celular Tumoral , Biologia Computacional , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Receptores Virais/química , Receptores Virais/metabolismo , Internalização do VírusRESUMO
Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed. T2_32 elicited superior neutralising responses against VOCs compared to the Wuhan-1 spike antigen in DNA prime-boost immunisation regime in guinea pigs. Heterologous boosting with the attenuated poxvirus - Modified vaccinia Ankara expressing T2_32 induced broader neutralising immune responses in all primed animals. T2_32, T2_35 and T2_36 elicited broader neutralising capacity compared to the Omicron BA.1 spike antigen administered by mRNA immunisation in mice. These findings demonstrate the utility of structure-informed computationally derived modifications of spike-based antigens for inducing broad immune responses covering more than 2 years of evolved SARS-CoV-2 variants.
RESUMO
Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.
Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Aerossóis e Gotículas Respiratórios , COVID-19/prevenção & controle , Propilenoglicóis , MamíferosRESUMO
Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal antibodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins representing the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell transmission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver.
Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/fisiologia , Anticorpos Anti-Hepatite C/imunologia , Receptores Depuradores Classe B/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Claudina-1 , Técnicas de Cocultura , Hepacivirus/imunologia , Hepacivirus/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ocludina , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Depuradores Classe B/genética , Tetraspanina 28 , Junções Íntimas/genética , Junções Íntimas/metabolismoRESUMO
Cellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel method that combines fluorescence microscopy and statistical modelling to derive accurate molecular counts. We have devised a system in which batches of a given biomolecule are differentially labelled with spectrally distinct fluorescent dyes (label A or B), and mixed such that B-labelled molecules are vastly outnumbered by those with label A. Complexes, containing this component, are then simply scored as either being positive or negative for label B. The frequency of positive complexes is directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond virology, this approach is readily transferable to other experimental systems and, therefore, provides a powerful tool for quantitative molecular biology.
Assuntos
Corantes Fluorescentes , Modelos Estatísticos , Anticorpos Monoclonais , Microscopia de FluorescênciaRESUMO
E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.
Assuntos
Hepacivirus , Hepatite C , Anticorpos Neutralizantes , Entropia , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , Proteínas do Envelope Viral/metabolismo , Internalização do VírusRESUMO
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Vacina BNT162 , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/metabolismo , Internalização do VírusRESUMO
BACKGROUND AND AIMS: ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS: We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS: We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS: These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.
Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Receptores Depuradores Classe B/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Amidas/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Hepacivirus/patogenicidade , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Cinética , Lipoproteínas HDL/metabolismo , Receptores Virais/antagonistas & inibidoresRESUMO
UNLABELLED: Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA-dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti-HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV-infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell-to-cell spread of virus. CONCLUSION: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarin's antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell.