RESUMO
Although viral protein structure and replication mechanisms have been explored extensively with X-ray crystallography, cryo-electron microscopy, and population imaging studies, these methods are often not able to distinguish dynamic conformational changes in real time. Single-molecule fluorescence resonance energy transfer (smFRET) offers unique insights into interactions and states that may be missed in ensemble studies, such as nucleic acid or protein structure, and conformational transitions during folding, receptor-ligand interactions, and fusion. We discuss the application of smFRET to the study of viral protein conformational dynamics, with a particular focus on viral glycoprotein dynamics, viral helicases, proteins involved in HIV reverse transcription, and the influenza RNA polymerase. smFRET experiments have played a crucial role in deciphering conformational changes in these processes, emphasising the importance of smFRET as a tool to help elucidate the life cycle of viral pathogens and identify key anti-viral targets.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia Crioeletrônica , Conformação Proteica , Proteínas ViraisRESUMO
Many viruses form highly pleomorphic particles. In influenza, virion structure is of interest not only in the context of virus assembly, but also because pleomorphic variations may correlate with infectivity and pathogenicity. We have used fluorescence super-resolution microscopy combined with a rapid automated analysis pipeline, a method well-suited to the study of large numbers of pleomorphic structures, to image many thousands of individual influenza virions; gaining information on their size, morphology and the distribution of membrane-embedded and internal proteins. We observed broad phenotypic variability in filament size, and Fourier transform analysis of super-resolution images demonstrated no generalized common spatial frequency patterning of HA or NA on the virion surface, suggesting a model of virus particle assembly where the release of progeny filaments from cells occurs in a stochastic way. We also showed that viral RNP complexes are located preferentially within Archetti bodies when these were observed at filament ends, suggesting that these structures may play a role in virus transmission. Our approach therefore offers exciting new insights into influenza virus morphology and represents a powerful technique that is easily extendable to the study of pleomorphism in other pathogenic viruses.
Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Montagem de Vírus , VírionRESUMO
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
Assuntos
Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Humanos , Limite de Detecção , Células VeroRESUMO
BACKGROUND: Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS: A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS: The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS: Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.
Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Criança , Gâmbia/epidemiologia , Streptococcus pyogenes , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vacinas Atenuadas , Imunoglobulina GRESUMO
The development of the SARS-CoV-2 pandemic has prompted an extensive worldwide sequencing effort to characterise the geographical spread and molecular evolution of the virus. A point mutation in the spike protein, D614G, emerged as the virus spread from Asia into Europe and the USA, and has rapidly become the dominant form worldwide. Here we review how the D614G variant was identified and discuss recent evidence about the effect of the mutation on the characteristics of the virus, clinical outcome of infection and host immune response.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Ácido Aspártico/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Glicina/genética , Humanos , Imunogenicidade da Vacina , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.
RESUMO
BACKGROUND/OBJECTIVE: The purpose of the study was to determine whether arterial diameter, flow-mediated dilatation (FMD), and arterial range are affected by spinal cord injury (SCI). We assessed arm (radial) and leg (posterior-tibial) arteries that are comparable in size and function to determine whether (a) arterial function is reduced in individuals with SCI vs nondisabled subjects and (b) decrements to SCI arterial function are greater in the legs vs arms. PARTICIPANTS: Eighteen men with chronic (9.8 +/- 6.3 years) SCI (T2 to T11; American Spinal Injury Association A) and 13 nondisabled subjects matched for age (33.1 +/- 4.8 vs 29.8 +/- 8.2 years old, respectively), height, and weight (BMI = 25.3 +/- 5.8 vs 26.6 +/- 5.5 kg/m2, respectively). METHODS: Radial and posterior tibial artery B-mode ultrasound images were continuously captured to measure resting diameter, occluded diameter, and postischemic diameters. Hierarchical linear modeling accounted for the nested experimental design. RESULTS: Individuals with SCI have lower systemic (arm + leg) FMD than nondisabled subjects (9.3% vs 12.3%, respectively; P= 0.035), primarily because of reduced leg FMD (11.5 +/- 3.1% vs 7.0 +/- 2.8% for SCI arms vs legs, respectively; P = 0.010). Persons with SCI also had lower arterial range than nondisabled subjects (0.79 vs 1.00 mm, respectively; P = 0.043), primarily because of the legs (0.81 +/- 0.09 vs 0.56 +/- 0.11 mm for SCI arms vs legs, respectively; P = 0.030). CONCLUSION: Leg arterial function seems to deteriorate at greater rates compared to the arms for individuals with SCI. Interventions to improve cardiovascular health should include measurements taken in the legs.