Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 3): 159996, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356771

RESUMO

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be useful for monitoring population-wide coronavirus disease 2019 (COVID-19) infections, especially given asymptomatic infections and limitations in diagnostic testing. We aimed to detect SARS-CoV-2 RNA in wastewater and compare viral concentrations to COVID-19 case numbers in the respective counties and sewersheds. Influent 24-hour composite wastewater samples were collected from July to December 2020 from two municipal wastewater treatment plants serving different population sizes in Orange and Chatham Counties in North Carolina. After a concentration step via HA filtration, SARS-CoV-2 RNA was detected and quantified by reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) and quantitative PCR (RT-qPCR), targeting the N1 and N2 nucleocapsid genes. SARS-CoV-2 RNA was detected by RT-ddPCR in 100 % (24/24) and 79 % (19/24) of influent wastewater samples from the larger and smaller plants, respectively. In comparison, viral RNA was detected by RT-qPCR in 41.7 % (10/24) and 8.3 % (2/24) of samples from the larger and smaller plants, respectively. Positivity rates and method agreement further increased for the RT-qPCR assay when samples with positive signals below the limit of detection were counted as positive. The wastewater data from the larger plant generally correlated (⍴ ~0.5, p < 0.05) with, and even anticipated, the trends in reported COVID-19 cases, with a notable spike in measured viral RNA preceding a spike in cases when students returned to a college campus in the Orange County sewershed. Correlations were generally higher when using estimates of sewershed-level case data rather than county-level data. This work supports use of wastewater surveillance for tracking COVID-19 disease trends, especially in identifying spikes in cases. Wastewater-based epidemiology can be a valuable resource for tracking disease trends, allocating resources, and evaluating policy in the fight against current and future pandemics.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , RNA Viral
2.
Int J Hyg Environ Health ; 228: 113547, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387880

RESUMO

Achievement of United Nations Sustainable Development Goal 6.1 centers on the availability of a safely managed drinking water source for all. However, meeting the criteria for this goal is challenging on island systems and elsewhere with limited freshwater supplies. We measured microbial and chemical water quality over three years on San Cristobal Island, Galapagos, an island with limited freshwater supply, necessitating use of cisterns or roof tanks to ensure water availability in households. Our results showed that the municipal water treatment plants generally produced high quality drinking water but detection of Escherichia coli in 2-30% of post-treatment distribution samples suggests contamination and/or regrowth during distribution and storage. Linear regression revealed a modest, negative relationship between residual chlorine and microbial concentrations in drinking water samples, while 24-h antecedent rainfall only slightly increased microbial counts. Taken together, our results underscore the challenge of providing a safely managed drinking water source where limited freshwater quantities result in intermittent flow and require storage at the household level. Efforts to meet sustainable development goals for island systems will likely need to consider water availability for any treatment technologies or programs aimed at meeting water quality goals.


Assuntos
Água Potável , Desenvolvimento Sustentável , Qualidade da Água , Abastecimento de Água , Praias , Cloro/análise , Equador , Enterobacteriaceae/isolamento & purificação , Enterococcus/isolamento & purificação , Chuva , Microbiologia da Água , Poluentes da Água/análise , Purificação da Água
3.
Front Microbiol ; 9: 1775, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158906

RESUMO

The North American prairie covered about 3.6 million-km2 of the continent prior to European contact. Only 1-2% of the original prairie remains, but the soils that developed under these prairies are some of the most productive and fertile in the world, containing over 35% of the soil carbon in the continental United States. Cultivation may alter microbial diversity and composition, influencing the metabolism of carbon, nitrogen, and other elements. Here, we explored the structure and functional potential of the soil microbiome in paired cultivated-corn (at the time of sampling) and never-cultivated native prairie soils across a three-states transect (Wisconsin, Iowa, and Kansas) using metagenomic and 16S rRNA gene sequencing and lipid analysis. At the Wisconsin site, we also sampled adjacent restored prairie and switchgrass plots. We found that agricultural practices drove differences in community composition and diversity across the transect. Microbial biomass in prairie samples was twice that of cultivated soils, but alpha diversity was higher with cultivation. Metagenome analyses revealed denitrification and starch degradation genes were abundant across all soils, as were core genes involved in response to osmotic stress, resource transport, and environmental sensing. Together, these data indicate that cultivation shifted the microbiome in consistent ways across different regions of the prairie, but also suggest that many functions are resilient to changes caused by land management practices - perhaps reflecting adaptations to conditions common to tallgrass prairie soils in the region (e.g., soil type, parent material, development under grasses, temperature and rainfall patterns, and annual freeze-thaw cycles). These findings are important for understanding the long-term consequences of land management practices to prairie soil microbial communities and their genetic potential to carry out key functions.

4.
Front Microbiol ; 5: 522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408683

RESUMO

Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA