Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285047

RESUMO

Pathogenic variants underlying Mendelian diseases often disrupt the normal physiology of a few tissues and organs. However, variant effect prediction tools that aim to identify pathogenic variants are typically oblivious to tissue contexts. Here we report a machine-learning framework, denoted "Tissue Risk Assessment of Causality by Expression for variants" (TRACEvar, https://netbio.bgu.ac.il/TRACEvar/ ), that offers two advancements. First, TRACEvar predicts pathogenic variants that disrupt the normal physiology of specific tissues. This was achieved by creating 14 tissue-specific models that were trained on over 14,000 variants and combined 84 attributes of genetic variants with 495 attributes derived from tissue omics. TRACEvar outperformed 10 well-established and tissue-oblivious variant effect prediction tools. Second, the resulting models are interpretable, thereby illuminating variants' mode of action. Application of TRACEvar to variants of 52 rare-disease patients highlighted pathogenicity mechanisms and relevant disease processes. Lastly, the interpretation of all tissue models revealed that top-ranking determinants of pathogenicity included attributes of disease-affected tissues, particularly cellular process activities. Collectively, these results show that tissue contexts and interpretable machine-learning models can greatly enhance the etiology of rare diseases.

2.
Nucleic Acids Res ; 51(W1): W478-W483, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207335

RESUMO

The distinct functions and phenotypes of human tissues and cells derive from the activity of biological processes that varies in a context-dependent manner. Here, we present the Process Activity (ProAct) webserver that estimates the preferential activity of biological processes in tissues, cells, and other contexts. Users can upload a differential gene expression matrix measured across contexts or cells, or use a built-in matrix of differential gene expression in 34 human tissues. Per context, ProAct associates gene ontology (GO) biological processes with estimated preferential activity scores, which are inferred from the input matrix. ProAct visualizes these scores across processes, contexts, and process-associated genes. ProAct also offers potential cell-type annotations for cell subsets, by inferring them from the preferential activity of 2001 cell-type-specific processes. Thus, ProAct output can highlight the distinct functions of tissues and cell types in various contexts, and can enhance cell-type annotation efforts. The ProAct webserver is available at https://netbio.bgu.ac.il/ProAct/.


Assuntos
Fenômenos Biológicos , Perfilação da Expressão Gênica , Software , Humanos , Ontologia Genética , Fenótipo , Especificidade de Órgãos , Internet
3.
J Mol Biol ; 434(11): 167532, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662455

RESUMO

Tissue contexts are extremely valuable when studying protein functions and their associated phenotypes. Recently, the study of proteins in tissue contexts was greatly facilitated by the availability of thousands of tissue transcriptomes. To provide access to these data we developed the TissueNet integrative database that displays protein-protein interactions (PPIs) in tissue contexts. Through TissueNet, users can create tissue-sensitive network views of the PPI landscape of query proteins. Unlike other tools, TissueNet output networks highlight tissue-specific and broadly expressed proteins, as well as over- and under-expressed proteins per tissue. The TissueNet v.3 upgrade has a much larger dataset of proteins and PPIs, and represents 125 adult tissues and seven embryonic tissues. Thus, TissueNet provides an extensive, quantitative, and user-friendly interface to study the roles of human proteins in adulthood and embryonic stages. TissueNet v3 is freely available at https://netbio.bgu.ac.il/tissuenet3.


Assuntos
Embrião de Mamíferos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas , Adulto , Bases de Dados de Proteínas , Embrião de Mamíferos/metabolismo , Humanos , Proteínas/química , Software
4.
J Mol Biol ; 434(11): 167619, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504357

RESUMO

Hereditary diseases tend to manifest clinically in few selected tissues. Knowledge of those tissues is important for better understanding of disease mechanisms, which often remain elusive. However, information on the tissues inflicted by each disease is not easily obtainable. Well-established resources, such as the Online Mendelian Inheritance in Man (OMIM) database and Human Phenotype Ontology (HPO), report on a spectrum of disease manifestations, yet do not highlight the main inflicted tissues. The Organ-Disease Annotations (ODiseA) database contains 4,357 thoroughly-curated annotations for 2,181 hereditary diseases and 45 inflicted tissues. Additionally, ODiseA reports 692 annotations of 635 diseases and the pathogenic tissues where they emerge. ODiseA can be queried by disease, disease gene, or inflicted tissue. Owing to its expansive, high-quality annotations, ODiseA serves as a valuable and unique tool for biomedical and computational researchers studying genotype-phenotype relationships of hereditary diseases. ODiseA is available at https://netbio.bgu.ac.il/odisea.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Doenças Genéticas Inatas , Humanos , Especificidade de Órgãos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA