Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 235(3): 1179-1195, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491734

RESUMO

Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.


Assuntos
Potyvirus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Resistência à Doença , Potyvirus/fisiologia
2.
Microorganisms ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36985178

RESUMO

Dickeya and Pectobacterium species are the causal agents of blackleg and soft rot diseases. This article explores the possibility of using the glycoalkaloids (GAs) naturally produced by the potato tuber after the greening process as a blackleg control method. We first tested the effect of GAs extracted from four potato cultivars on the growth and viability of one Dickeya and one Pectobacterium strain in growth media. Then, four years of field experiments were performed in which the incidence of blackleg was assessed in plants grown from the seed tubers of cv. Agria that were subjected to various greening treatments. In the growth media, all GAs isolated from the four cultivars appeared to be bacteriostatic and bactericidal against both bacteria strains. The inhibitory effect varied among GAs from different cultivars. Except for a one-year field trial, the blackleg incidence was lower in plants grown from green seed tubers without the yield being affected. The blackleg control was marginal, probably due to the low production of GAs by the tubers of cv. Agria after greening. Based on our findings, seed tuber greening has a good potential for blackleg control after the identification of varieties that present optimal GA composition after greening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA