RESUMO
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.
RESUMO
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
RESUMO
The Entomophthoromycota is a ubiquitous group of fungi best known as pathogens of a wide variety of economically important insect pests, and other soil invertebrates. This group of fungi also includes a small number of parasites of reptiles, vertebrates (including humans), macromycetes, fern gametophytes, and desmid algae, as well as some saprobic species. Here we report on recent studies to resolve the phylogenetic relationships within the Entomophthoromycota and to reliably place this group among other basal fungal lineages. Bayesian Interference (BI) and Maximum Likelihood (ML) analyses of three genes (nuclear 18S and 28S rDNA, mitochondrial 16S, and the protein-coding RPB2) as well as non-molecular data consistently and unambiguously identify 31 taxa of Entomophthoromycota as a monophyletic group distinct from other Zygomycota and flagellated fungi. Using the constraints of our multi-gene dataset we constructed the most comprehensive rDNA phylogeny yet available for Entomophthoromycota. The taxa studied here belong to five distinct, well-supported lineages. The Basidiobolus clade is the earliest diverging lineage, comprised of saprobe species of Basidiobolus and the undescribed snake parasite Schizangiella serpentis nom. prov. The Conidiobolus lineage is represented by a paraphyletic grade of trophically diverse species that include saprobes, insect pathogens, and facultative human pathogens. Three well supported and exclusively entomopathogenic lineages in the Entomophthoraceae center around the genera Batkoa, Entomophthora and Zoophthora, although several genera within this crown clade are resolved as non-monophyletic. Ancestral state reconstruction suggests that the ancestor of all Entomophthoromycota was morphologically similar to species of Conidiobolus. Analyses using strict, relaxed, and local molecular clock models documented highly variable DNA substitution rates among lineages of Entomophthoromycota. Despite the complications caused by different rates of molecular evolution among lineages, our dating analysis indicates that the Entomophthoromycota originated 405±90 million years ago. We suggest that entomopathogenic lineages in Entomophthoraceae probably evolved from saprobic or facultatively pathogenic ancestors during or shortly after the evolutionary radiation of the arthropods.
Assuntos
Evolução Molecular , Fungos/classificação , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Fúngico/genética , DNA Mitocondrial/genética , Fungos/genética , Genes Fúngicos , Insetos/microbiologia , Funções Verossimilhança , Modelos GenéticosRESUMO
Populations of the entomopathogenic fungus Batkoa major were analyzed using sequences of four genomic regions and evaluated in relation to their genetic diversity, insect hosts and collection site. This entomophthoralean pathogen killed numerous insect species from 23 families and five orders in two remote locations during 2019. The host list of this biotrophic pathogen contains flies, true bugs, butterflies and moths, beetles, and barkflies. Among the infected bugs (Order Hemiptera), the spotted lanternfly (Lycorma delicatula) is a new invasive planthopper pest of various woody plants that was introduced to the USA from Eastern Asia. A high degree of clonality occurred in the studied populations and high gene flow was revealed using four molecular loci for the analysis of population structure. We did not detect any segregation in the population regarding host affiliation (by family or order), or collection site. This is the first description of population structure of a biotrophic fungus-generalist in the entomopathogenic Order Entomophthorales. This analysis aimed to better understand the potential populations of entomopathogen-generalists infecting emerging invasive hosts in new ecosystems.
Assuntos
Borboletas , Entomophthorales , Hemípteros , Animais , Ecossistema , Fungos , Hemípteros/microbiologia , Humanos , Insetos , Estações do AnoRESUMO
Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle.
RESUMO
Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it difficult to determine whether these sequences represent conspecific or novel taxa. In this meta-analysis, over 2000 insufficiently identified Tuber sequences from 76 independent studies were analysed within a phylogenetic framework. Species ranges, host associates, geographical distributions and intra- and interspecific ITS variability were assessed. Over 99% of the insufficiently identified Tuber sequences grouped within clades composed of species with little culinary value (Maculatum, Puberulum and Rufum). Sixty-four novel phylotypes were distinguished including 36 known only from ectomycorrhizae or soil. Most species of Tuber showed 1-3% intraspecific ITS variability and >4% interspecific ITS sequence variation. We found 123 distinct phylotypes based on 96% ITS sequence similarity and estimated that Tuber contains a minimum of 180 species. Based on this meta-analysis, species in Excavatum, Maculatum and Rufum clades exhibit preference for angiosperm hosts, whereas those in the Gibbosum clade are preferential towards gymnosperms. Sixteen Tuber species (>13% of the known diversity) have putatively been introduced to continents or islands outside their native range.
Assuntos
DNA Ribossômico/genética , Fungos/genética , Variação Genética , Especificidade de Hospedeiro , Íntrons/genética , Análise de Sequência de DNA , Fungos/classificação , Genes Fúngicos , Filogenia , Esporos FúngicosRESUMO
Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.
Assuntos
Antibiose/genética , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Simbiose/genética , Bactérias/classificação , Burkholderia/genética , Burkholderia/metabolismo , Fungos/classificação , Perfilação da Expressão Gênica , Rhizopus/genética , Rhizopus/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: The genus Pleurotus is most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number of Pleurotus species are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests. The unique properties of Pleurotus species widely used in many environmental technologies, such as organic solid waste recycling, chemical pollutant degradation, and bioethanol production. METHODOLOGY: The literature study encompasses peer-reviewed journals identified by systematic searches of electronic databases such as Google Scholar, NCBI, Springer, ResearchGate, ScienceDirect, and ISI Web of Knowledge. The search scheme was divided into several steps, as described below. RESULTS: In this review, we describe studies examining the biotechnological feasibility of Pleurotus spp. to elucidate the importance of this genus for use in green technology. Here, we review areas of application of the genus Pleurotus as a prospective biotechnological tool. CONCLUSION: The incomplete description of some fungal biochemical pathways emphasises the future research goals for this fungal culture.
RESUMO
Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications.
Assuntos
Genômica , Filogenia , Rhizopus/classificação , Rhizopus/genética , Elementos de DNA Transponíveis/genética , Genes Fúngicos Tipo Acasalamento , Tamanho do Genoma , Genoma Fúngico , Funções Verossimilhança , Fases de Leitura Aberta/genética , Especificidade da Espécie , Sequenciamento Completo do GenomaRESUMO
The fungus Entomophthora muscae (Entomophthoromycota, Entomophthorales, Entomophthoraceae) is a widespread insect pathogen responsible for fatal epizootic events in many dipteran fly hosts. During epizootics in 2011 and 2012 in Durham, North Carolina, we observed a transition of fungal infections from one host, the plant-feeding fly Delia radicum, to a second host, the predatory fly Coenosia tigrina. Infections first appeared on Delia in the middle of March, but by the end of May, Coenosia comprised 100% of infected hosts. Multilocus sequence typing revealed that E. muscae in Durham comprises two distinct subpopulations (clades) with several haplotypes in each. Fungi from either clade are able to infect both fly species, but vary in their infection phenologies and host-specificities. Individuals of the more phylogenetically diverse clade I predominated during the beginning of the spring epizootic, infecting mostly phytophagous Delia flies. Clade II dominated in late April and May and affected mostly predatory Coenosia flies. Analysis of population structure revealed two subpopulations within E. muscae with limited gene exchange. This study provides the first evidence of recombination and population structure within the E. muscae species complex, and illustrates the complexity of insect-fungus relationships that should be considered for development of biological control methods.
Assuntos
Dípteros/microbiologia , Entomophthora/fisiologia , Interações Hospedeiro-Patógeno , Animais , Dípteros/ultraestrutura , Entomophthora/genética , Meio Ambiente , Genética Populacional , Haplótipos , FilogeniaRESUMO
The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/-) mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota). In all of these fungi, the minus (-) allele features the SexM high mobility group (HMG) gene flanked by an RNA helicase gene and a TP transporter gene (TPT). Within the R. oryzae complex, the plus (+) mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase), ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.