Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 53(2): 484-492, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38084054

RESUMO

The energy loss (Eloss) caused by inefficient charge transfer and large energy level offset at the buried interface can easily restrict the performance of p-i-n perovskite solar cells (PVSCs). In this study, the utilization of poly-TPD and P3CT-N as a dual-hole transporting layer (HTLs) was implemented in a sequential manner. This approach aimed to improve the charge transfer efficiency of the HTL and mitigate charge recombination at the interface between the HTL and PVK. The results showed that this strategy also could achieve more suitable energy levels, improve the quality of the perovskite film layer, and ultimately enhance the device's stability. IPVSCs employing the dual-HTLs approach exhibited the highest power conversion efficiency of 19.85%, and the open-circuit voltage increased to 1.09 V from 1.00 V. This study offers a straightforward and efficient approach to boost the device performance by minimizing Eloss and reducing the buried interfacial defects. The findings underscore the potential of employing a dual-HTL strategy as a promising pathway for further advancements in PVSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA