Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 32(2): 379-394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217628

RESUMO

Purpose: This study aims to assess the dosimetry and treatment efficiency of TaiChiB-based Stereotactic Body Radiotherapy (SBRT) plans applying to treat two-lung lesions with one overlapping organs at risk. Methods: For four retrospective patients diagnosed with two-lung lesions each patient, four treatment plans were designed including Plan Edge, TaiChiB linac-based, RGS-based, and a linac-RGS hybrid (Plan TCLinac, Plan TCRGS, and Plan TCHybrid). Dosimetric metrics and beam-on time were employed to evaluate and compare the TaiChiB-based plans against Plan Edge. Results: For Conformity Index (CI), Plan TCRGS outperformed all other plans with an average CI of 1.06, as opposed to Plan Edge's 1.33. Similarly, for R50 %, Plan TCRGS was superior with an average R50 % of 3.79, better than Plan Edge's 4.28. In terms of D2 cm, Plan TCRGS also led with an average of 48.48%, compared to Plan Edge's 56.25%. For organ at risk (OAR) sparing, Plan TCRGS often displayed the lowest dosimetric values, notably for the spinal cord (Dmax 5.92 Gy) and lungs (D1500cc 1.00 Gy, D1000cc 2.61 Gy, V10 Gy 15.14%). However, its high Dmax values for the heart and great vessels sometimes exceeded safety thresholds. Plan TCHybrid presented a balanced approach, showing doses comparable to or better than Plan Edge without crossing safety limits. In terms of beam-on time, Plan TCLinac emerged as the most efficient treatment option in three out of four cases, followed closely by Plan Edge in one case. Plan TCRGS, despite its dosimetric advantages, was the least efficient, recording notably longer beam-on times, with a peak at 33.28 minutes in Case 2. Conclusion: For patients with two-lung lesions treated by SBRT whose one lesion overlaps with OARs, the Plan TCHybrid delivered by TaiChiB digital radiotherapy system can be recommended as a clinical option.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Pulmão/patologia , Etoposídeo
2.
Strahlenther Onkol ; 199(5): 498-510, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988665

RESUMO

OBJECTIVE: To identify delivery error type and predict associated error magnitude by image-based features using machine learning (ML). METHODS: In this study, a total of 40 thoracic plans (including 208 beams) were selected, and four error types with different magnitudes were introduced into the original plans, including 1) collimator misalignment (COLL), 2) monitor unit (MU) variation, 3) systematic multileaf collimator misalignment (MLCS), and 4) random MLC misalignment (MLCR). These dose distributions of portal dose predictions for the original plans were defined as the reference dose distributions (RDD), while those for the error-introduced plans were defined as the error-introduced dose distributions (EDD). Both distributions were calculated for all beams with portal dose image prediction (PDIP). Besides, 14 image-based features were extracted from RDD and EDD of portal dose predictions to obtain the feature vectors. In addition, a random forest was adopted for the multiclass classification task, and regression prediction for error magnitude. RESULTS: The top five features extracted with the highest weight included 1) the relative displacement in the x direction, 2) the ratio of the absolute minimum residual error to the maximal RDD value, 3) the product of the maximum and minimum residuals, 4) the ratio of the absolute maximum residual error to the maximal RDD value, and 5) the ratio of the absolute mean residual value to the maximal RDD value. The relative displacement in the x direction had the highest weight. The overall accuracy of the five-class classification model was 99.85% for the validation set and 99.30% for the testing set. This model could be applied to the classification of the error-free plan, COLL, MU, MLCS, and MLCR with an accuracy of 100%, 98.4%, 99.9%, 98.0%, and 98.3%, respectively. MLCR had the worst performance in error magnitude prediction (70.1-96.6%), while others had better performance in error magnitude prediction (higher than 93%). In the error magnitude prediction, the mean absolute error (MAE) between predicted error magnitude and actual error ranged from 0.03 to 0.33, with the root mean squared error (RMSE) varying from 0.17 to 0.56 for the validation set. The MAE and RMSE ranged from 0.03 to 0.50 and 0.44 to 0.59 for the test set, respectively. CONCLUSION: It could be demonstrated in this study that the image-based features extracted from RDD and EDD can be employed to identify different types of delivery errors and accurately predict error magnitude with the assistance of ML techniques. They can be used to associate traditional gamma analysis with clinically based analysis for error classification and magnitude prediction in patient-specific IMRT quality assurance.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado de Máquina , Dosagem Radioterapêutica
3.
Strahlenther Onkol ; 199(5): 485-497, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36688953

RESUMO

OBJECTIVE: This study aimed to improve the image quality and CT Hounsfield unit accuracy of daily cone-beam computed tomography (CBCT) using registration generative adversarial networks (RegGAN) and apply synthetic CT (sCT) images to dose calculations in radiotherapy. METHODS: The CBCT/planning CT images of 150 esophageal cancer patients undergoing radiotherapy were used for training (120 patients) and testing (30 patients). An unsupervised deep-learning method, the 2.5D RegGAN model with an adaptively trained registration network, was proposed, through which sCT images were generated. The quality of deep-learning-generated sCT images was quantitatively compared to the reference deformed CT (dCT) image using mean absolute error (MAE), root mean square error (RMSE) of Hounsfield units (HU), and peak signal-to-noise ratio (PSNR). The dose calculation accuracy was further evaluated for esophageal cancer radiotherapy plans, and the same plans were calculated on dCT, CBCT, and sCT images. RESULTS: The quality of sCT images produced by RegGAN was significantly improved compared to the original CBCT images. ReGAN achieved image quality in the testing patients with MAE sCT vs. CBCT: 43.7 ± 4.8 vs. 80.1 ± 9.1; RMSE sCT vs. CBCT: 67.2 ± 12.4 vs. 124.2 ± 21.8; and PSNR sCT vs. CBCT: 27.9 ± 5.6 vs. 21.3 ± 4.2. The sCT images generated by the RegGAN model showed superior accuracy on dose calculation, with higher gamma passing rates (93.3 ± 4.4, 90.4 ± 5.2, and 84.3 ± 6.6) compared to original CBCT images (89.6 ± 5.7, 85.7 ± 6.9, and 72.5 ± 12.5) under the criteria of 3 mm/3%, 2 mm/2%, and 1 mm/1%, respectively. CONCLUSION: The proposed deep-learning RegGAN model seems promising for generation of high-quality sCT images from stand-alone thoracic CBCT images in an efficient way and thus has the potential to support CBCT-based esophageal cancer adaptive radiotherapy.


Assuntos
Neoplasias Esofágicas , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia
4.
J Appl Clin Med Phys ; 24(12): e14119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37568269

RESUMO

BACKGROUND: Dose to heart substructures is a better predictor for major adverse cardiac events (MACE) than mean heart dose (MHD). We propose an avoidance planning strategy for important cardiac substructures. MATERIAL AND METHODS: Two plans, clinical and cardiac substructure-avoidance plan, were generated for twenty patients. Five dose-sensitive substructures, including left ventricle, pulmonary artery, left anterior descending branch, left circumflex branch and the coronary artery were chosen. The avoidance plan aims to meet the target criteria and organ-at-risk (OARs) constraints while minimizing the dose parameters of the above five substructures. The dosimetric assessments included the mean dose and the maximum dose of cardiac substructures and several volume parameters. In addition, we also evaluated the relative risk of coronary artery disease (CAD), chronic heart failure (CHF), and radiation pneumonia (RP). RESULTS: Pearson correlation coefficient and R2 value of linear regression fitting demonstrated that MHD had poor prediction ability for the mean dose of the cardiac substructures. Compared to clinical plans, an avoidance plan is able to statistically significantly decrease the dose to key substructures. Meanwhile, the dose to OARs and the coverage of the target are comparable in the two plans. In addition, it can be observed that the avoidance plan statistically decreases the relative risks of CAD, CHF, and RP. CONCLUSIONS: The substructure-avoidance planning strategy that incorporates the cardiac substructures into optimization process, can protect the important heart substructures, such as left ventricle, left anterior descending branch and pulmonary artery, achieving the substantive sparing of dose-sensitive cardiac structures, and have the potential to decrease the relative risks of CAD, CHF, and RP.


Assuntos
Cardiopatias , Pneumonite por Radiação , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Coração , Vasos Coronários , Cardiopatias/prevenção & controle , Planejamento da Radioterapia Assistida por Computador , Órgãos em Risco
5.
Strahlenther Onkol ; 197(12): 1084-1092, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351454

RESUMO

BACKGROUND: Functional planning based merely on 4DCT ventilation imaging has limitations. In this study, we proposed a radiotherapy planning strategy based on 4DCT ventilation imaging and CT density characteristics. MATERIALS AND METHODS: For 20 stage III non-small-cell lung cancer (NSCLC) patients, clinical plans and lung-avoidance plans were generated. Through deformable image registration (DIR) and quantitative image analysis, a 4DCT ventilation map was calculated. High-, medium-, and low-ventilation regions of the lung were defined based on the ventilation value. In addition, the total lung was also divided into high-, medium-, and low-density areas according to the HU threshold. The lung-avoidance plan aimed to reduce the dose to functional and high-density lungs while meeting standard target and critical structure constraints. Standard and dose-function metrics were compared between the clinical and lung-avoidance plans. RESULTS: Lung avoidance plans led to significant reductions in high-function and high-density lung doses, without significantly increasing other organ at risk (OAR) doses, but at the expense of a significantly degraded homogeneity index (HI) and conformity index (CI; p < 0.05) of the planning target volume (PTV) and a slight increase in monitor units (MU) as well as in the number of segments (p > 0.05). Compared with the clinical plan, the mean lung dose (MLD) in the high-function and high-density areas was reduced by 0.59 Gy and 0.57 Gy, respectively. CONCLUSION: A lung-avoidance plan based on 4DCT ventilation imaging and CT density characteristics is feasible and implementable, with potential clinical benefits. Clinical trials will be crucial to show the clinical relevance of this lung-avoidance planning strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Biomed Eng Online ; 20(1): 94, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556141

RESUMO

BACKGROUND: Accurate segmentation of lung lobe on routine computed tomography (CT) images of locally advanced stage lung cancer patients undergoing radiotherapy can help radiation oncologists to implement lobar-level treatment planning, dose assessment and efficacy prediction. We aim to establish a novel 2D-3D hybrid convolutional neural network (CNN) to provide reliable lung lobe auto-segmentation results in the clinical setting. METHODS: We retrospectively collected and evaluated thorax CT scans of 105 locally advanced non-small-cell lung cancer (NSCLC) patients treated at our institution from June 2019 to August 2020. The CT images were acquired with 5 mm slice thickness. Two CNNs were used for lung lobe segmentation, a 3D CNN for extracting 3D contextual information and a 2D CNN for extracting texture information. Contouring quality was evaluated using six quantitative metrics and visual evaluation was performed to assess the clinical acceptability. RESULTS: For the 35 cases in the test group, Dice Similarity Coefficient (DSC) of all lung lobes contours exceeded 0.75, which met the pass criteria of the segmentation result. Our model achieved high performances with DSC as high as 0.9579, 0.9479, 0.9507, 0.9484, and 0.9003 for left upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), right lower lobe (RLL), and right middle lobe (RML), respectively. The proposed model resulted in accuracy, sensitivity, and specificity of 99.57, 98.23, 99.65 for LUL; 99.6, 96.14, 99.76 for LLL; 99.67, 96.13, 99.81 for RUL; 99.72, 92.38, 99.83 for RML; 99.58, 96.03, 99.78 for RLL, respectively. Clinician's visual assessment showed that 164/175 lobe contours met the requirements for clinical use, only 11 contours need manual correction. CONCLUSIONS: Our 2D-3D hybrid CNN model achieved accurate automatic segmentation of lung lobes on conventional slice-thickness CT of locally advanced lung cancer patients, and has good clinical practicability.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Redes Neurais de Computação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
7.
Biomed Eng Online ; 20(1): 54, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082755

RESUMO

BACKGROUND: To develop a novel subjective-objective-combined (SOC) grading standard for auto-segmentation for each organ at risk (OAR) in the thorax. METHODS: A radiation oncologist manually delineated 13 thoracic OARs from computed tomography (CT) images of 40 patients. OAR auto-segmentation accuracy was graded by five geometric objective indexes, including the Dice similarity coefficient (DSC), the difference of the Euclidean distance between centers of mass (ΔCMD), the difference of volume (ΔV), maximum Hausdorff distance (MHD), and average Hausdorff distance (AHD). The grading results were compared with those of the corresponding geometric indexes obtained by geometric objective methods in the other two centers. OAR auto-segmentation accuracy was also graded by our subjective evaluation standard. These grading results were compared with those of DSC. Based on the subjective evaluation standard and the five geometric indexes, the correspondence between the subjective evaluation level and the geometric index range was established for each OAR. RESULTS: For ΔCMD, ΔV, and MHD, the grading results of the geometric objective evaluation methods at our center and the other two centers were inconsistent. For DSC and AHD, the grading results of three centers were consistent. Seven OARs' grading results in the subjective evaluation standard were inconsistent with those of DSC. Six OARs' grading results in the subjective evaluation standard were consistent with those of DSC. Finally, we proposed a new evaluation method that combined the subjective evaluation level of those OARs with the range of corresponding DSC to determine the grading standard. If the DSC ranges between the adjacent levels did not overlap, the DSC range was used as the grading standard. Otherwise, the mean value of DSC was used as the grading standard. CONCLUSIONS: A novel OAR-specific SOC grading standard in thorax was developed. The SOC grading standard provides a possible alternative for evaluation of the auto-segmentation accuracy for thoracic OARs.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Tórax
8.
J Appl Clin Med Phys ; 22(12): 97-107, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34699670

RESUMO

OBJECTIVES: This study attempts to explore a novel peripheral lung stereotactic body radiotherapy (SBRT) planning technique that can balance the pros and cons of three-dimensional conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) / volumetric modulated arc therapy (VMAT). METHODS: Treatment plans were retrospectively designed based on CRT, IMRT, VMAT, and the proposed CRT-IMRT-combined (Co-CRIM) techniques using Pinnacle treatment planning system (TPS) for 20 peripheral lung cancer patients. Co-CRIM used an inverse optimization algorithm available in Pinnacle TPS. To develop a Co-CRIM plan, the number of segments in each field was limited to one, the minimum segment area was set to the internal target volume (ITV), and the minimum monitor units (MU) of the segment was the quotient of fractional dose divided by twice the number of total fields. The performance of Co-CRIM was then compared with other techniques. RESULTS: For conformity index (CI), Co-CRIM performed comparably to IMRT/VMAT but better than CRT. For gradient index (GI), Co-CRIM was similar to IMRT/VMAT or CRT. For heterogeneity index (HI), Co-CRIM was comparable to IMRT/VMAT, higher than CRT. The dosimetric results of spinal cord and lung with Co-CRIM were better than CRT, comparable to IMRT, but inferior to VMAT. The MU resulted from Co-CRIM was lower than IMRT/VMAT but higher than CRT. For plan verification γ passing rate, Co-CRIM was higher than IMRT/VMAT, comparable to CRT. For planning time, Co-CRIM was shorter than CRT or VMAT but similar to IMRT. CONCLUSIONS: The proposed Co-CRIM technique on Pinnacle TPS is an effective planning technique for peripheral lung SBRT.


Assuntos
Radiocirurgia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Técnicas de Planejamento , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
9.
J Appl Clin Med Phys ; 21(12): 74-83, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33128499

RESUMO

PURPOSE: Position accuracy of the multi-leaf collimator (MLC) is essential in stereotactic body radiotherapy (SBRT). This study is aimed to investigate the dosimetric impacts of the MU-weighted MLC positioning uncertainties of SBRT for patients with early stage peripheral non-small cell lung cancer (NSCLC). METHODS: Three types of MLC position error were simulated: Type 1, random error; Type 2, system shift, in which both MLC banks shifted to the left or right direction; and Type 3, in which both MLC banks moved with same magnitudes in the opposite directions. Two baseline plans were generated: an automatic plan (AP) and a manually optimized plan (MP). Multi-leaf collimator position errors were introduced to generate simulated plans with the preset MLC leaf position errors, which were then reimported into the Pinnacle system to generate simulated plans, respectively. The dosimetric parameters (CI, nCI, GI, etc.) and gEUD values of PTV and OARs were calculated. Linear regression between MU-weighted/unweighted MLC position error and gEUD was performed to obtain dose sensitivity. RESULTS: The dose sensitivities of the PTVs were -4.93, -38.94, -41.70, -55.55, and 30.33 Gy/mm for random, left shift, right shift, system close, and system open MLC errors, respectively. There were significant differences between the MU-weighted and the unweighted dose sensitivity, which was -38.94 Gy/mm vs -3.42 Gy/mm (left shift), -41.70 Gy/mm vs -3.56 Gy/mm (right shift), -55.55 Gy/mm vs -4.84 Gy/mm (system close), and 30.33 vs 2.64 Gy/mm (system open). For the system open/close MLC errors, as the PTV volume became larger, the dose sensitivity decreased. APs provided smaller dose sensitivity for the system shift and system close MLC errors compared to the conventional MPs. CONCLUSIONS: There was significant difference in dose sensitivity between MU-weighted and unweighted MLC position error of SBRT radiotherapy in peripheral NSCLC. MU is suggested to be included in the dosimetric evaluation of the MLC misalignments, since it is much closer to clinical radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
J Appl Clin Med Phys ; 21(9): 134-142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700823

RESUMO

PURPOSE: The number of dose-limiting shells in the optimization process is one of the key factors determining the quality of stereotactic body radiotherapy (SBRT) auto-planning in the Pinnacle treatment planning system (TPS). This study attempted to derive the optimal number of shells by evaluating the auto-plans designed with different number of shells for peripheral lung cancer patients treated with SBRT. METHODS: Identical treatment technique, optimization process, constraints, and dose calculation algorithm in the Pinnacle TPS were retrospectively applied to 50 peripheral lung cancer patients who underwent SBRT in our center. For each of the patients, auto-plans were optimized based on two shells, three shells, four shells, five shells, six shells, seven shells, eight shells, respectively. The optimal number of shells for the SBRT auto-planning was derived through the evaluations and comparisons of various dosimetric parameters of planning target volume (PTV) and organs at risk (OARs), monitor units (MU), and optimization time of the plans. RESULTS: The conformity index (CI) and the gradient index (GI) of PTV, the maximum dose outside the 2 cm of PTV (D2cm ), Dmax of spinal cord (SCmax ), the percentage of volume of total lung excluding ITV receiving 20 Gy (V20) and 10 Gy (V10), and the mean lung dose (MLD) were improved when the number of shell increased, but the improvement became not significant as the number of shell reached six. The monitor units (MUs) varied little among different plans where no statistical differences were found. However, as the number of shell increased, the auto-plan optimization time increased significantly. CONCLUSIONS: It appears that for peripheral lung SBRT plan using six shells can yield satisfactory plan quality with acceptable beam MUs and optimization time in the Pinnacle TPS.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
11.
BMC Cancer ; 14: 79, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24512571

RESUMO

BACKGROUND: Quickly and accurately localizing small peripheral pulmonary lesions can avoid prolonged operative time and unplanned open thoracotomy. In this study, we aimed to introduce and evaluate a new technique combining virtual simulation and methylene blue staining for the localization of small peripheral pulmonary lesions. METHODS: Seventy four (74) patients with 80 peripheral pulmonary lesions <20 mm in size on computer tomography (CT) were virtually punctured using a radiotherapy planning simulator on the day before operation. Under general anaesthesia, methylene blue dye was injected to the virtually identified point according to the surface point, angle and depth previously determined by the simulator. The wedge resection of the marked lesion was performed under video-assisted thoracoscopic surgery (VATS) and the specimens were sent for immediate pathologic examination. According to pathology results, appropriate surgical procedures were decided and undertaken. RESULTS: The average lesion size was 10.4±3.5 mm (range: 4-17 mm) and the average distance to the pleural surface was 9.4±4.9 mm. Our preoperative localization procedure was successful in 75 of 80 (94%) lesions. Histological examination showed 28 benign lesions and 52 lung cancers. The shortest distance between the edges of the stain and lesion was 5.1±3.1 mm. Localization time was 17.4±2.3 min. All patients with malignant lesions subsequently underwent lobectomy and systematic lymph node dissection. No complications were observed in all participants. CONCLUSIONS: The novel technique combining the preoperative virtual simulation and methylene blue staining techniques has a high success rate for localizing small peripheral pulmonary lesions, particularly for those tiny lesions which are difficult to visualise and palpate during VATS.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Azul de Metileno , Nódulo Pulmonar Solitário/diagnóstico por imagem , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X/métodos , Interface Usuário-Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/instrumentação
12.
Clin Lung Cancer ; 25(4): e173-e180.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402120

RESUMO

INTRODUCTION: Patients with early non-small-cell lung cancer (NSCLC) have a relatively long survival time after stereotactic body radiation therapy (SBRT). Predicting radiation-induced pneumonia (RP) has important clinical and social implications for improving the quality of life of such patients. This study developed an RP prediction model by using 3-dimensional (3D) dosiomic features. The model can be used to guide radiation therapy to reduce toxicity. METHODS: Radiomic features were extracted from pre-treatment CT, dose-volume histogram (DVH) parameters and dosiomic features were extracted from the 3D dose distribution of 140 lung cancer patients. Four predictive models: (1) CT; (2) CT + DVH; (3) CT + Rtdose; and (4) Hybrid, CT + DVH + Rtdose, were trained to predict symptomatic RP by extremely randomized trees. Accuracy, sensitivity, specificity, and area under the receiver operator characteristic curve were evaluated. RESULT: Results showed that the fraction regimen was correlated with symptomatic RP (P < .001). The proposed model achieved promising prediction results. The performance metrics for CT, CT + DVH, CT + Rtdose, and Hybrid were as follows: accuracy: 0.786, 0.821, 0.821, and 0.857; sensitivity: 0.625, 1, 0.875, and 1; specificity: 0.8, 0.565, 0.5, and 0.875; and area under the receiver operator characteristic curve: 0.791, 0.809, 0.907, and 0.920, respectively. CONCLUSION: Dosiomic features can improve the performance of the predictive model for symptomatic RP compared with that obtained with the CT + DVH model. The model proposed in this study can help radiation oncologists individually predict the incidence rate of RP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Radiocirurgia , Tomografia Computadorizada por Raios X , Humanos , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/radioterapia , Feminino , Masculino , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Radiocirurgia/métodos , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Prognóstico , Imageamento Tridimensional
13.
Int J Radiat Oncol Biol Phys ; 119(3): 978-989, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159780

RESUMO

PURPOSE: Implementing artificial intelligence technologies allows for the accurate prediction of radiation therapy dose distributions, enhancing treatment planning efficiency. However, esophageal cancers present unique challenges because of tumor complexity and diverse prescription types. Additionally, limited data availability hampers the effectiveness of existing artificial intelligence models. This study developed a deep learning model, trained on a diverse data set of esophageal cancer prescriptions, to improve dose prediction accuracy. METHODS AND MATERIALS: We retrospectively collected data from 530 patients with esophageal cancer, including single-target and simultaneous integrated boost prescriptions, for model building. The proposed Asymmetric ResNeSt (AS-NeSt) model features novel 3-dimensional (3D) ResNeSt blocks and an asymmetrical architecture. We constructed a loss function targeting global and local doses and validated the model's performance against existing alternatives. Model-assisted experiments were used to validate its clinical benefits. RESULTS: The AS-NeSt model maintained an absolute prediction error below 5% for each dosimetric metric. The average Dice similarity coefficient for isodose volumes was 0.93. The model achieved an average relative prediction error of 2.02%, statistically lower than Hierarchically Densely Connected U-net (4.17%), DoseNet (2.35%), and Densely Connected Network (3.65%). It also demonstrated significantly fewer parameters and shorter prediction times. Clinically, the AS-NeSt model raised physicians' ability to accurately preassess appropriate treatment methods before planning from 95.24% to 100%, reduced planning time by over 61% for junior dosimetrists and 52% for senior dosimetrists, and decreased both inter- and intra-dosimetrist discrepancies by more than 50%. CONCLUSIONS: The AS-NeSt model, developed with innovative 3D ResNeSt blocks and an asymmetrical encoder-decoder structure, has been validated using clinical esophageal cancer patient data. It accurately predicts 3D dose distributions for various prescriptions, including simultaneous integrated boost, showing potential to improve the management of esophageal cancer treatment in a clinical setting.


Assuntos
Aprendizado Profundo , Neoplasias Esofágicas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Humanos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos
14.
Phys Med ; 111: 102614, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295129

RESUMO

PURPOSE: This paper studied a novel calculation framework that can determine the optimal value isocenter position of single isocenter SRS treatment plan for multiple brain metastases, in order to minimize the dosimetric variations caused by rotational uncertainty. MATERIALS AND METHODS: 21 patients with 2-4 GTVswho received SRS treatment for multiple brain metastases in our institution were selected for the retrospective study. The PTVwas obtained by expanding GTV 1 mm isotropic margin. We studied a stochastic optimization framework, which determined the optimal value isocenter location by maximizing the average target dose coverageCtarget,meanwith a rotation error of no more than 1°. We evaluated the performance of the optimal isocenter by comparing theCtarget,meanand average dice similarity coefficient (DSC)with the optimal value and the center of mass (CM) respectively as the treatment isocenter. The extra PTV margin to achieve 100% target dose coverage was calculated by our framework. RESULTS: Compared to the CM method, the optimal value isocenter method increased the averageCtarget,meanof all targets from 97.0% to 97.7%and the average DSC from 0.794to 0.799. Throughout all the cases, the average extra PTV margin to obtain full target dose coverage was 0.7 mmwhen using the optimal value isocenter as the treatment isocenter. CONCLUSION: We studied a novel computational framework using stochastic optimization to determine the optimal isocenter position of SRS treatment plan for multiple brain metastases. At the same time, our framework gave the extra PTV margin to obtain full target dose coverage.


Assuntos
Neoplasias Encefálicas , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Radiocirurgia , Estudos Retrospectivos
15.
Technol Cancer Res Treat ; 21: 15330338221107966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35731648

RESUMO

Background/purpose: To access the comparative dosimetric and radiobiological advantages of two methods of intensity-modulated radiation therapy (IMRT)-based hybrid radiotherapy planning for stage III nonsmall cell lung cancer (NSCLC). Methods: Two hybrid planning methods were respectively characterized by conventional fraction radiotherapy (CFRT) and stereotactic body radiotherapy (SBRT) and CFRT and simultaneous integrated boost (SIB) planning. All plans were retrospectively completed using the 2 methods for 20 patients with stage III NSCLC. CFRT and SBRT dose regimes 2 Gy × 30 f and 12.5 Gy × 4 f were, respectively, used for planning target volume of lymph node (PTVLN) and planning target volume of the primary tumor (PTVPT), while dose regimes 2 Gy × 26 f for PTVLN and sequential 2 Gy × 4 f for PTVLN combined with 12.5 Gy × 4 f for PTVPT were adopted for CFRT and SIB plans. SBRT and SIB EQD2 dose were calculated voxel by voxel, and then, respectively, superimposed with 30-fraction and 26-fraction CFRT plan dose to achieve biological equivalent dose (BED) dosimetric parameters of CFRT and SBRT and CFRT and SIB plans. Tumor control probability (TCP)/normal tissue complication probability (NTCP) was, respectively, calculated by equivalent uniform dose/Lyman-Kutcher-Burman models. BED plan parameters and TCP/NTCP were analyzed between 2 methods of hybrid planning. Primary tumor/lymph node (LN)/total TCP values were, respectively, evaluated as a function of the radiation dose needed to control 50% of tumor (TCD50) for 20 patients. Dosimetric errors were analyzed by nontransit electronic portal imaging device dosimetry measurement during hybrid plan delivery. Results: Statistically lower BED plan parameters of PTVLN D2 and homogeneity index resulted in slightly lower averaged LN/total TCP curves by CFRT and SIB planning. The gaps between Max and Min LN/total TCP curves were significantly closer for CFRT and SIB planning, which indicated better robustness of LN/total TCPs. A lower esophagus dose resulted in a lower esophagus NTCP by CFRT and SIB planning, which may be compromised by 1 week shorter overall treatment time by CFRT and SIB irradiation. Spinal cord Dmax was significantly reduced by CFRT and SIB plans. The dose verification results of the subplans involved in hybrid plans were acceptable, which showed that the 2 methods of hybrid planning could be delivered accurately in our center. Conclusion: CFRT and SIB plannings have more advantages on BED plan parameters and TCP/NTCP than CFRT and SBRT planning, and both methods of IMRT-based hybrid planning could be executed accurately for stage III NSCLC. The effectiveness of the results needs to be validated in the hybrid trial.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
16.
Radiat Oncol ; 17(1): 188, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397060

RESUMO

BACKGROUND: This study was designed to establish radiation pneumonitis (RP) prediction models using dosiomics and/or deep learning-based radiomics (DLR) features based on 3D dose distribution. METHODS: A total of 140 patients with non-small cell lung cancer who received stereotactic body radiation therapy (SBRT) were retrospectively included in this study. These patients were randomly divided into the training (n = 112) and test (n = 28) sets. Besides, 107 dosiomics features were extracted by Pyradiomics, and 1316 DLR features were extracted by ResNet50. Feature visualization was performed based on Spearman's correlation coefficients, and feature selection was performed based on the least absolute shrinkage and selection operator. Three different models were constructed based on random forest, including (1) a dosiomics model (a model constructed based on dosiomics features), (2) a DLR model (a model constructed based on DLR features), and (3) a hybrid model (a model constructed based on dosiomics and DLR features). Subsequently, the performance of these three models was compared with receiver operating characteristic curves. Finally, these dosiomics and DLR features were analyzed with Spearman's correlation coefficients. RESULTS: In the training set, the area under the curve (AUC) of the dosiomics, DLR, and hybrid models was 0.9986, 0.9992, and 0.9993, respectively; the accuracy of these three models was 0.9643, 0.9464, and 0.9642, respectively. In the test set, the AUC of these three models was 0.8462, 0.8750, and 0.9000, respectively; the accuracy of these three models was 0.8214, 0.7857, and 0.8571, respectively. The hybrid model based on dosiomics and DLR features outperformed other two models. Correlation analysis between dosiomics features and DLR features showed weak correlations. The dosiomics features that correlated DLR features with the Spearman's rho |ρ| ≥ 0.8 were all first-order features. CONCLUSION: The hybrid features based on dosiomics and DLR features from 3D dose distribution could improve the performance of RP prediction after SBRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Pneumonite por Radiação , Radiocirurgia , Humanos , Pneumonite por Radiação/etiologia , Radiocirurgia/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia
17.
Technol Cancer Res Treat ; 21: 15330338221104881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726209

RESUMO

Objectives: In this study, we propose a deep learning-based approach to predict Intensity-modulated radiation therapy (IMRT) quality assurance (QA) gamma passing rates using delivery fluence informed by log files. Methods: A total of 112 IMRT plans for chest cancers were planned and measured by portal dosimetry equipped on TrueBeam linac. The convolutional neural network (CNN) based learning model was trained using delivery fluence as inputs and gamma passing rates (GPRs) of 4 different criteria (3%/3 mm, 2%/3 mm, 3%/2 mm, and 2%/2 mm) as outputs. Model performance for both validation and test sets was assessed using mean absolute error (MAE), mean squared error (MSE), root MSE (RMSE), Spearman rank correlation coefficients (Sr), and Determination coefficient (R2) between the measured and predicted GPR values. Results: In the test set, the MAE of the prediction model were 0.402, 0.511, 1.724, and 2.530, the MSE were 0.640, 0.986, 6.654, and 9.508, the RMSE were 0.800, 0.993, 2.580, and 3.083, the Sr were 0.643, 0.684, 0.821, and 0.824 (P < .001) and the R2 were 0.4110, 0.4666, 0.6677, and 0.6769 for 3%/3 mm, 3%/2 mm, 2%/3 mm, and 2%/2 mm, respectively. The MAE and RMSE of the prediction model decreased with stricter gamma criteria while the Sr and R2 between measured and predicted GPR values increased. Conclusions: The CNN prediction model based on delivery fluence informed by log files could accurately predict IMRT QA passing rates for different gamma criteria. It could reduce QA workload and improve efficiency in pretreatment QA. Our results suggest that the CNN prediction model based on delivery fluence informed by log files may be a promising tool for the gamma evaluation of IMRT QA.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
18.
Med Dosim ; 47(1): 32-37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34551878

RESUMO

To evaluate the dosimetric effect of intensity-modulated radiation therapy (IMRT) for postoperative non-small cell lung cancer (NSCLC), with and without the air cavity in the planning target volume (PTV). Two kinds of IMRT plans were made for 21 postoperative NSCLC patients. In Plan-0: PTV included the tracheal air cavity, and in Plan-1: the air cavity was subtracted from the PTV. For PTV, the dosimetric parameters, including Dmean, D98, D95, D2, D0.2, conformity index (CI), and homogeneity index (HI) were evaluated. For organs at risk (OARs), the evaluation indexes, included the V5, V20 and the mean lung dose (MLD) of total lung, the V30, V40, and the mean heart dose (MHD) of heart, the spinal cord Dmax, and the V35 and the mean esophageal dose (MED) of esophagus. The number of segments and MUs were also recorded. Additionally, the correlation between the Plan-1 dosimetric change value relative to Plan-0, the size of air cavity, and the volume proportion of the cavity in the PTV was also analyzed. The Dmean of PTV, D2, D0.2, HI and CI in Plan-1 decreased compared with those in Plan-0. For OARs, the V30, MHD, and MED also decreased. The CI change value of Plan-1 relative to Plan-0 had a significantly negative correlation with the size and the volume proportion of air cavity, and the MED change value also had a significantly negative correlation with the air cavity size. The IMRT plans for patients with postoperative NSCLC can achieve a better target dose distribution and offer an improved sparing of the heart and esophagus by removing the PTV air cavity, while reducing the target conformity. The change value of CI and MED had a significantly negative correlation with the air cavity size.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Radiat Oncol ; 16(1): 119, 2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176503

RESUMO

BACKGROUND/PURPOSE: To establish regression models of physical and equivalent dose in 2 Gy per fraction (EQD2) plan parameters of two kinds of hybrid planning for stage III NSCLC. METHODS: Two kinds of hybrid plans named conventional fraction radiotherapy & stereotactic body radiotherapy (C&S) and conventional fraction radiotherapy & simultaneous integrated boost (C&SIB) were retrospectively made for 20 patients with stage III NSCLC. Prescription dose of C&S plans was 2 Gy × 30f for planning target volume of lymph node (PTVLN) and 12.5 Gy × 4f for planning target volume of primary tumor (PTVPT), while prescription dose of C&SIB plans was 2 Gy × 26f for PTVLN and sequential 2 Gy × 4f for PTVLN combined with 12.5 Gy × 4f for PTVPT. Regression models of physical and EQD2 plan parameters were established based on anatomical geometry features for two kinds of hybrid plans. The features were mainly characterized by volume ratio, min distance and overlapping slices thickness of two structures. The possibilities of regression models of EQD2 plan parameters were verified by spearman's correlation coefficients between physical and EQD2 plan parameters, and the influence on the consistence of fitting goodness between physical and EQD2 models was investigated by the correlations between physical and EQD2 plan parameters. Finally, physical and EQD2 models predictions were compared with plan parameters for two new patients. RESULTS: Physical and EQD2 plan parameters of PTVLN CI60Gy have shown strong positive correlations with PTVLN volume and min distance(PT to LN), and strong negative correlations with PTVPT volume for two kinds of hybrid plans. PTV(PT+LN) CI60Gy is not only correlated with above three geometry features, but also negatively correlated with overlapping slices thickness(PT and LN). When neck lymph node metastasis was excluded from PTVLN volume, physical and EQD2 total lung V20 showed a high linear correlation with corrected volume ratio(LN to total lung). Meanwhile, physical total lung mean dose (MLD) had a high linear correlation with corrected volume ratio(LN to total lung), while EQD2 total lung MLD was not only affected by corrected volume ratio(LN to total lung) but also volume ratio(PT to total lung). Heart D5, D30 and mean dose (MHD) would be more susceptible to overlapping structure(heart and LN). Min distance(PT to ESO) may be an important feature for predicting EQD2 esophageal max dose for hybrid plans. It's feasible for regression models of EQD2 plan parameters, and the consistence of the fitting goodness of physical and EQD2 models had a positive correlation with spearman's correlation coefficients between physical and EQD2 plan parameters. For total lung V20, ipsilateral lung V20, and ipsilateral lung MLD, the models could predict that C&SIB plans were higher than C&S plans for two new patients. CONCLUSION: The regression models of physical and EQD2 plan parameters were established with at least moderate fitting goodness in this work, and the models have a potential to predict physical and EQD2 plan parameters for two kinds of hybrid planning.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Planejamento de Assistência ao Paciente/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/métodos , Análise de Regressão , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
20.
Front Oncol ; 11: 735062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692508

RESUMO

PURPOSE: The purpose of this study is to investigate whether there are predictors and cutoff points that can predict the acceptable lung dose using intensity-modulated radiation therapy (IMRT) and volume-modulated arc therapy (VMAT) in radiotherapy for upper ang middle esophageal cancer. MATERIAL AND METHODS: Eighty-two patients with T-shaped upper-middle esophageal cancer (UMEC) were enrolled in this retrospective study. Jaw-tracking IMRT plan (JT-IMRT), full-arc VMAT plan (F-VMAT), and pactial-arc VMAT plan (P-VMAT) were generated for each patient. Dosimetric parameters such as MLD and V20 of total lung were compared among the three plannings. Ten factors such as PCTVinferior length and PCTVinferior length/total lung length were calculated to find the predictors and cutoff points of the predictors. All patients were divided into two groups according to the cutoff points, and the dosimetric differences between the two groups of the three plans were compared. ANOVA, receiver operating characteristic (ROC) analysis, and Mann-Whitney U-test were performed for comparisons between datasets. A p <0.05 was considered statistically significant. RESULT: The quality of the targets of the three plannings was comparable. The total lung dose in P-VMAT was significantly lower than that in JT IMRT and F-VMAT. Monitor unit (MU) of F-VMAT and P-VMAT was significantly lower than that of JT IMRT. ROC analysis showed that among JT IMRT, F-VMAT, and P-VMAT, PCTVi-L, and PCTVi-L/TLL had diagnostic power to predict the suitability of RT plans according to lung dose constraints of our department. For JT IMRT, the cutoff points of PCTVi-L and PCTVi-L/TLL were 16.6 and 0.59. For F-VMAT, the cutoff points of PCTVi-L and PCTVi-L/TLL were 16.75 and 0.62. For P-VMAT, the cutoff points of PCTVi-L and PCTVi-L/TLL were 15.15 and 0.59. After Mann-Whitney U-test analysis, it was found that among the three plannings, the group with lower PCTVi-L and PCTVi-L/TLL could significantly reduce the dose of total lung and heart (p <0.05). CONCLUSION: PCTVi-L <16.6 and PCTVi-L/TLL <0.59 for JT IMRT, PCTVi-L <16.75 and PCTVi-L/TLL <0.62 for F-VMAT and PCTVi-L <15.15, and PCTVi-L/TLL <0.59 for P-VMAT can predict whether patients with T-shaped UMEC can meet the lung dose limits of our department.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA