Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 118: 197-204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509628

RESUMO

Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.


Assuntos
Doenças dos Peixes , Linguados , Vibrioses , Vibrio vulnificus , Vibrio , Animais , Antibacterianos , Vacinas Bacterianas , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Linguados/microbiologia , Peptídeos , Vacinas de Produtos Inativados , Vibrio/imunologia , Vibrioses/prevenção & controle , Vibrioses/veterinária
2.
Fish Shellfish Immunol ; 98: 499-507, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32001355

RESUMO

Cathepsin K belongs to the family of cysteine cathepsins. It is well known that the cysteine cathepsins participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin K is very limited. In the present study, a cathepsin K homologue (SsCTSK) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, are existed in SsCTSK. SsCTSK also possesses a peptidase domain with three catalytically essential residues (Cys25, His162 and Asn183). Phylogenetic profiling indicated that SsCTSK was evolutionally close to the cathepsin K of other teleost fish. Expression of SsCTSK occurred in multiple tissues and was induced by bacterial infection. Purified recombinant SsCTSK (rSsCTSK) exhibited apparent maximal peptidase activity at 45 °C, and its enzymatic activity was remarkably declined in the presence of the cathepsin inhibitor E-64. Moreover, rSsCTSK possesses the ability to bind with PAMPs and bacteria. Finally, knockdown of SsCTSK expression facilitated bacterial invasion in black rockfish. Collectively, these results indicated that SsCTSK functions as a cysteine protease and may serves as a target for pathogen manipulation of host defense system.


Assuntos
Catepsina K/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Perciformes , Vibrioses/veterinária , Vibrio , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Filogenia , Vibrioses/imunologia , Vibrioses/microbiologia
3.
Fish Shellfish Immunol ; 98: 508-514, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004613

RESUMO

At present, several reports have indicated that the C-terminal peptides of tissue factor pathway inhibitor 1 (TFPI-1) were active antibacterial peptides. However, the functions of TFPI-1 C-terminal peptides in teleost are still very limited. In this study, a C-terminal peptide, TC26 (with 26 amino acids), derived from common carp (Cyprinus carpio) TFPI-1, was synthesized and investigated for its antibacterial spectrum, action mechanism, as well as the in vivo effects on bacterial invasion. Our results showed that TC26 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, as well as Gram-negative bacterium Vibrio vulnificus. TC26 treatment facilitated the bactericidal process of erythromycin by enhancing the out-membrane permeability of V. vulnificus. During the bactericidal process, TC26 killed the target bacterial cells Vibrio vulnificus, by destroying cell membrane integrity, penetrating into the cytoplasm and inducing degradation of genomic DNA and total RNA. In vivo study showed that administration of turbot with TC26 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicated that TC26 is a novel and active antibacterial peptide and may play a vital role in fighting pathogenic infection in aquaculture.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Carpas/metabolismo , Proteínas de Peixes/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , DNA Bacteriano , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados
4.
Fish Shellfish Immunol ; 93: 623-630, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31400512

RESUMO

Cathepsin S belong to the cathepsin L-like family of cysteine cathepsins. It is well known that Cathepsin S participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin S is less investigated. In the present study, a cathepsin S homologue (SsCTSS) from the teleost fish black rockfish (Sebastes schlegelii) were identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, were existed in the cathepsin. SsCTSS possesses a peptidase domain with three catalytically essential residues (Cys25, His162, and Asn183). Phylogenetic profiling indicated that SsCTSS are evolutionally close to the cathepsin S of other teleost fish. The expression of SsCTSS in immune-related tissues was upregulated in a time-dependent manner upon bacterial pathogen infection. Purified recombinant SsCTSS (rSsCTSS) exhibited apparent peptidase activity, which was remarkably declined in the presence of the cathepsin inhibitor E-64. rSsCTSS showed strong binding ability to LPS and PGN, the major constituents of the outer membranes of Gram-negative and Gram-positive bacteria, respectively. rSsCTSS also exhibited the capability of agglutination to different bacteria. The knockdown of SsCTSS attenuated the ability of host to eliminate pathogenic bacteria. Taken together, our results suggested that SsCTSS functions as cysteine protease which might be involved in the antibacterial immunity of black rockfish.


Assuntos
Catepsinas/genética , Catepsinas/imunologia , Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Catepsinas/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Perciformes/genética , Perciformes/imunologia , Filogenia , Alinhamento de Sequência/veterinária
5.
Fish Shellfish Immunol ; 87: 73-81, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30615989

RESUMO

C1q-domain-containing (C1qDC) proteins, which are involved in a series of immune responses, are important pattern recognition receptors in innate immunity in vertebrates and invertebrates. Functional studies of C1qDC proteins in vertebrates are scarce. In the present study, a C1qDC protein (SsC1qDC) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsC1qDC is 636 bp, and the predicted amino acid sequence of SsC1qDC shares 62%-69% overall identity with the C1qDC proteins of several fish species. SsC1qDC possesses conserved C1qDC features, including a signal sequence and a C1q domain. SsC1qDC was expressed in different tissues and its expression was up-regulated by bacterial and viral infection. Recombinant SsC1qDC (rSsC1qDC) exhibited apparent binding activities against PAMPs including LPS and PGN. rSsC1qDC had antibacterial activity against Vibrio parahaemolyticus, and was able to enhance the phagocytic activity of macrophages towards Vibrio anguillarum. rSsC1qDC interacted with human heat-aggregated IgG. Furthermore, in the presence of rSsC1qDC, fish exhibited enhanced resistance against bacterial infection. Collectively, these results indicated that SsC1qDC serves as a pattern recognition receptor and plays a vital role in the defense system of black rockfish.


Assuntos
Complemento C1q/imunologia , Proteínas de Peixes/imunologia , Perciformes/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Animais , Complemento C1q/química , Resistência à Doença , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Humanos , Imunoglobulina G/imunologia , Fases de Leitura Aberta , Perciformes/microbiologia , Domínios Proteicos , Receptores de Reconhecimento de Padrão/química , Vibrio/imunologia , Vibrioses/imunologia , Vibrioses/veterinária
6.
Dev Comp Immunol ; 118: 103995, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33412232

RESUMO

The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Antineoplásicos/farmacologia , Proteínas Sanguíneas/genética , Proteínas de Peixes/genética , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Linguados/genética , Linguados/imunologia , Linguados/metabolismo , Células HT29 , Humanos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/uso terapêutico
7.
ACS Omega ; 3(5): 5537-5546, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458757

RESUMO

Near-infrared (NIR)-response photocatalysts are desired to make use of 44% NIR solar irradiation. A flower-like α-MnO2/N-doped graphene (NG) hybrid catalyst was synthesized and characterized by X-ray diffraction spectroscopy, transmission electron microscopy, Raman spectroscopy, UV-vis-NIR diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The flower-like material of α-MnO2/NG was oval-shaped with the semi major axis of 140 nm and semi minor axis of 95 nm and the petal thickness of 3.5-8.0 nm. The indirect band gap was measured to be 1.16 eV, which is very close to 0.909 eV estimated by the first-principles calculation. The band gap can harvest NIR irradiation to 1069 nm. The coupling of α-MnO2 with NG sheets to form α-MnO2/NG can significantly extend the spectrum response up to 1722 nm, improving dramatically the photocatalytic activity. The experimental results displayed that the α-MnO2/NG hybrid catalyst can recognize ammonia in methyl orange (MO)-ammonia, rhodamine B (RHB)-ammonia, and humic acid-ammonia mixed solutions and selectively degrade ammonia. The degradation ratio of ammonia reached over 93.0% upon NIR light irradiation in the mixed solutions, while those of MO, RHB, and humic acid were only 9.7, 9.4, and 15.7%, respectively. The products formed during the photocatalytic process were followed with ion chromatography, gas chromatography, and electrochemistry. The formed nitrogen gas has been identified during the photocatalytic process. A valence band recognition model was suggested based on the selective degradation of ammonia via α-MnO2/NG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA