Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 250: 118339, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325791

RESUMO

Combustion is an effective and cost-efficient thermochemical conversion method for solid waste, showing promise for the resource utilization of shoe manufacturing waste (SMW). However, SMW is generally composed of different components, which can lead to unstable combustion and excessive pollutant emissions, especially NOx. To date, combustion characteristics, reaction mechanism and fuel nitrogen (fuel-N) conversion of different SMW components remain unclear. In this work, the combustion behavior of typical SMW components combustion was investigated using Thermogravimetric coupled with Fourier transform infrared spectrum (TG-FTIR). A simplified single-step reaction mechanism was proposed according to the temperature interval to estimate reaction mechanism of SMW. Additionally, the relationship between fuel-N conversion tendency and fuel properties was established. The results indicate that the values for the comprehensive combustion performance index (S) and flammability index (C) range from 1.65 to 0.44 and 3.98 to 1.37, respectively. This demonstrates the significant variability in combustion behavior among different SMW components. Cardboard, leather and sponge have higher values of S and C, suggesting a better ignition characteristic and a stable combustion process. During the combustion of SMW, nitrogen oxides (NO and N2O) are the main nitrogen-containing compounds in the flue gases, with NO being the major contributor, accounting for over 82.97 % of the nitrogen oxides. NO has a negative correlation with nitrogen content, but it is opposite for N2O, HCN and NH3. Furthermore, the conversion of NO, N2O and NH3 is proportional to logarithmic values of O/N, while its conversion to HCN is proportional to logarithmic values of VM/N. These findings facilitate the prediction of the fuel-N conversion of solid waste combustion. This work might shed light on combustion optimization and in-situ pollutant emission control in solid waste combustion.


Assuntos
Sapatos , Cinética , Resíduos Industriais/análise , Nitrogênio/análise , Incineração , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA