Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 429(2): 113686, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307941

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most deadly and metastatic cancers of the urinary tract. Latest studies have confirmed that long non-coding RNAs (lncRNAs) play a crucial role in a variety of cancers. Some of these lncRNAs code for small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which exert some value in predicting the prognosis of certain cancer patients, but little is known regarding the function of SNHGs within the PCa. AIM OF THE STUDY: To explore the expression distribution and differential analysis of SNHGs in different tumors using RNA-seq and survival data from TCGA and GTEx, and to assess the potential impacts of the lncRNA SNHG25 on human PCa. To validate the expression of SNHG25 using experimental data and to investigate in detail its particular molecular biological function on PCa both in vivo and in vitro. METHODS: LncRNA SNHG25 expression was analyzed by bioinformatic prediction and qPCR. CCK-8, EdU, transwell, wound healing, and western blotting assays were conducted to investigate the main role of lncRNA SNHG25 in PCa. Xenograft tumour growth model in nude mice was surveyed by in vivo imaging and Ki-67 staining. AKT pathway activator (SC79) was used to verify the interaction among SNHG25 and PI3K/AKT signaling pathway. RESULTS: Bioinformatics analysis and experimental research illuminated that the expression of lncRNA SNHG25 was observably up-regulated in PCa tissues and cells. Moreover, SNHG25 knockdown restrained PCa cell proliferation, invasion and migration, while promoting apoptosis. Xenografts model confirmed that the si-SNHG25 group had a significant inhibitory effect on PCa tumour growth in vivo. Additionally, a series of gain-of-function analyses suggested that SNHG25 could activate the PI3K/AKT pathway to accelerate PCa progression. CONCLUSIONS: These in vitro and in vivo findings demonstrate that SNHG25 is highly expressed in PCa and facilitates PCa development through regulation of PI3K/AKT signaling pathway. SNHG25 acts as an oncogene to predict tumour malignancy and survival in PCa patients and may therefore become a promising potential molecular target for early detection and therapy of lethal PCa.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA