Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chem Soc Rev ; 53(11): 5781-5861, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38690681

RESUMO

Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.

2.
Nano Lett ; 23(16): 7419-7426, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37539988

RESUMO

Multifarious molecular ferroelectrics with multipolar axial characteristics have emerged in recent years, enriching the scenarios for energy harvesting, sensing, and information processing. The increased polar axes have enhanced the urgency of distinguishing different polarization states in material design, mechanism exploration, etc. However, conventional methods hardly meet the requirements of in situ, fast, microscale, contactless, and nondestructive features due to their inherent limitations. Herein, SHG polarimetry is introduced to probe the multioriented polarizations on a nanosized multiaxial molecular ferroelectric, i.e., TMCM-CdCl3 nanoplates, as an example. Combined with the analysis of the second-order susceptibility tensor, SHG polarimetry could serve as an effective method to detect the polarization orders and domain distributions of molecular ferroelectrics. Profiting from the full-optical feature, SHG polarimetry can even be performed on samples covered by transparent mediums, 2D materials, or thin metal electrodes. Our research might spark further fundamental studies and expand the application boundaries of next-generation ferroelectric materials.

3.
J Am Chem Soc ; 144(30): 13806-13814, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35816081

RESUMO

Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.

4.
J Nanobiotechnology ; 20(1): 444, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224596

RESUMO

Tissue engineering scaffolds are essential for repairing bone defects. The use of biomimetic scaffolds for bone tissue engineering has been investigated for decades. To date, the trend in this area has been moved toward the construction of biomimetic acellular scaffolds with effective modification to enhance the osteogenic differentiation efficiency of bone marrow mesenchymal stem cells (BMSCs). The exosomes derived from BMSCs have been shown as a potential therapeutic tool for repairing bone defects. In this study, we demonstrated the pro-osteogenic effects of exosomes derived form osteogenic differentiated BMSCs (OBMSC) and presented a novel exosmes-functionalized decellularized fish scale (DE-FS) scaffold for promoting bone regeneration in vivo. The DE-FS scaffolds were obtained through decellularization and decalcification processes, which exhibited high biocompatibility and low immunological rejection. The intrinsic anisotropic structures of DE-FS could enhance the adhesion and proliferation ability of BMSCs in vitro. In addition, we demonstrated that the porous structure of DE-FS endowed them with the capacity to load and release exosomes to BMSCs, resulting in the enhanced osteogenic differentiation of BMSCs. Concerning these pro-osteogenic effects, it was further proved that OBMSC exosome-modified DE-FS scaffolds could effectively promote bone regeneration in the mouse calvarial defect models. In conclusion, our work provided a new insight to design exosome-riched biomimetic scaffolds for bone tissue engineering and clinical applications.


Assuntos
Exossomos , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Camundongos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Angew Chem Int Ed Engl ; 61(32): e202204135, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670373

RESUMO

Cyanido-bridged dimetallic complexes are attracting attention due to their varied structures and properties. However, homochiral cyanido-bridged dimetallic complexes are rare, and making them ferroelectric is a great challenge. Introducing C-F⋅⋅⋅K interactions between the guest chiral cations and the host [KFe(CN)6 ]2- framework, gives three-dimensional cyanido-bridged dimetallic multiferroics, [R- and S-3-fluoropyrrolidinium]2 [KFe(CN)6 ] (R- and S-3-FPC). The mirror-symmetric vibrational circular dichroism (VCD) signal shows their enantiomeric nature. R- and S-3-FPC crystallize in the same chiral-polar space group P21 at 298 K. Piezoresponse force microscopy (PFM), polarizing optical microscopy, and temperature-dependent second-harmonic generation (SHG) measurements show their multiferroic properties (the coexistence of ferroelectricity and ferroelasticity), in line with the Aizu notation of 222F2. R-3-FPC shows excellent ferroelectricity with saturated polarization up to 9.4 µC cm-2 .

6.
J Am Chem Soc ; 143(13): 5091-5098, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755474

RESUMO

Solid-state molecular rotor-type materials such as host-guest inclusion compounds are very desirable for the construction of molecular ferroelectrics. However, they usually have a low Curie temperature (Tc) and uniaxial nature, severely hindering their practical applications. Herein, by regulating the anion to control "momentum matching" in the crystal structure, we successfully designed a high-temperature multiaxial host-guest inclusion ferroelectric [(MeO-C6H4-NH3)(18-crown-6)][TFSA] (MeO-C6H4-NH3 = 4-methoxyanilinium, TFSA = bis(trifluoromethanesulfonyl)ammonium) with the Aizu notation of mmmFm. Compared to the parent uniaxial ferroelectric [(MeO-C6H4-NH3)(18-crown-6)][BF4] with a Tc of 127 K, the introduction of larger TFSA anions brings a lower crystal symmetry at room temperature and a higher energy barrier of molecular motions in phase transition, giving [(MeO-C6H4-NH3)(18-crown-6)][TFSA] multiaxial ferroelectricity and a high Tc up to 415 K (above that of BaTiO3). To our knowledge, such a record temperature enhancement of 288 K makes its Tc the highest among the reported crown-ether-based ferroelectrics, giving a wide working temperature range for applications in data storage, temperature sensing, actuation, and so on. This work will provide guidance and inspiration for designing high-Tc host-guest inclusion ferroelectrics.

7.
Opt Lett ; 43(21): 5238-5241, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382976

RESUMO

Here we report a simple and scalable electrostatics-assisted colloidal self-assembly technology for fabricating monolayer nanoparticle antireflection coatings on geometrically complex optical surfaces. By using a surface-modified glass volumetric flask with a long neck as a proof-of-concept demonstration, negatively charged silica nanoparticles with 110 nm diameter are electrostatically adsorbed on both the interior and exterior surfaces of the flask possessing positive surface charges. The self-assembled monolayer nanoparticle antireflection coatings can significantly improve light transmission through different regions of the flask with varied curvatures, as revealed by optical transmission measurements and numerical simulations using a simplified thin-film multilayer model.

8.
Biosens Bioelectron ; 258: 116350, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705075

RESUMO

Early monitoring of cardiovascular disease (CVD) is crucial for its treatment and prognosis. Hence, highly specific and sensitive detection method is urgently needed. In this study, we propose a novel herringbone microfluid chip with aptamer functionalized core-shell photonic crystal (PhC) barcode integration for high throughput multiplex CVD detection. Based on the PhC derived from co-assembled carboxylated single-wall carbon nanotubes and silicon dioxide nanoparticles, we obtain core-shell PhC barcodes by hydrogel replicating and partially etching. These core-shell PhC barcodes not only retain the original structural colors coding element, but also fully expose a large number of carboxyl elements in the ore for the probe immobilization. We further combine the functionalized barcodes with herringbone groove microfluidic chip to elucidate its acceptability in testing clinical sample. It is demonstrated that the special design of microfluidic chip can significantly enhance fluid vortex resistance and contact frequency, improving the sample capture efficiency and detection sensitivity. These features indicate that our core-shell PhC barcodes-integrated herringbone microfluidic system possesses great potential for multiplex biomarker detection in clinical application.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Nanotubos de Carbono , Nanotubos de Carbono/química , Humanos , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Fótons , Nanopartículas/química , Técnicas Analíticas Microfluídicas/instrumentação
9.
Nat Commun ; 15(1): 4416, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789426

RESUMO

Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C-O in the enol form and C-N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors.

10.
Adv Mater ; : e2405981, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970528

RESUMO

Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.

11.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547269

RESUMO

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Polímeros , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Álcool de Polivinil/química , Álcool de Polivinil/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletricidade , Animais , Ratos , Ratos Sprague-Dawley , Compostos Férricos/química , Compostos Férricos/metabolismo
12.
Acta Biomater ; 157: 200-209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494009

RESUMO

Medical patches hold great prospects for diabetic wound administration, while their practical effects in diabetic wound management remain mired by the complexity of wound microenvironments. Here, inspired by the biological processes of glucose metabolism, we present a catalytic microneedle patch that encapsulates near-infrared-II responsive and dual-nanozyme active Au-Cu2MoS4 nanosheets (Au-CMS NSs) for treating diabetic wound infection. Since microneedle patches have great tissue penetration ability, the Au-CMS NSs can be delivered to deep tissues and fully interact with wound environments. Benefitting from the dual nanozyme activities (glucose oxidase and catalase) and near-infrared-II photothermal performances of Au-CMS NSs, the composited catalytic patch realizes in situ glucose consumption, oxygen generation, and bacterial elimination. Notably, their repeatability of near-infrared-II responsive antibacterial capability has been proved both in vitro and in diabetic mice against methicillin-resistant Staphylococcus aureus. The catalytic patch can find wide catalytic applications in wound care and infection prevention. STATEMENT OF SIGNIFICANCE: Effective treatment of diabetic wound infection remains still challenging in the clinic owing to the complex wound microenvironments. Herein, inspired by the biological processes of glucose metabolism in lives, we propose a novel strategy to treat wound infections by modulating the diabetic wound microenvironments. A near-infrared-II (NIR-II) responsive biocatalytic microneedle patch with both glucose oxidase- and catalase-like activities capable of killing bacteria, reducing glucose level, and supplying O2 is developed. The patch not only achieves efficient antibacterial outcomes in vitro, but also is a valuable wound patch for efficient treatment of MRSA-infected wounds in diabetic mice. We anticipate that this therapeutic strategy will provide the applications in chronic inflammation and infections.


Assuntos
Diabetes Mellitus Experimental , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Camundongos , Catalase , Diabetes Mellitus Experimental/terapia , Glucose Oxidase , Fototerapia , Infecção dos Ferimentos/terapia , Oxigênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Glucose
13.
Adv Sci (Weinh) ; 10(6): e2206150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581585

RESUMO

Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.


Assuntos
Materiais Biocompatíveis , Materiais Biomiméticos , Engenharia Tecidual , Eritrócitos
14.
Mater Horiz ; 10(3): 869-874, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36628648

RESUMO

The electrocaloric effect (ECE) is an efficient and environmentally friendly method for solid-state refrigeration driven by an electric field. However, disregarding the ECE performance, the mass of materials also limits the amount of energy transferred in the cooling process. While molecular ECE materials have been attracting intensive attention with their excellent ECE properties, most reported molecular compounds can only be utilized in the form of thin films or single crystals. Unlike inorganic ceramics, molecular thin films and single crystals are very difficult to prepare in a large amount, which greatly restrains the future application of those materials. In this work, we report an excellent molecular ECE material in the form of polycrystalline molecular ceramics. Such molecular ceramics are composed of plastic molecular ferroelectrics, and can fulfil the requirement of large mass, easy processing, excellent performance and low energy consumption. Our molecular ceramic of HQReO4 (HQ: protonated quinuclidine) demonstrates an isothermal entropy change of 5.8 J K-1 kg-1 and an adiabatic temperature change of 3.1 K. Notably, by a simple low-temperature pressing process without added adhesives (about 373 K), an HQReO4 molecular ceramic block can be obtained, and its ECE performance is observed to be comparable to that of single crystals, for the first time. This work proposes a new application form for molecular electrocaloric materials, which opens up new ideas for solid-state refrigeration.

15.
Adv Mater ; 35(19): e2211584, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840984

RESUMO

Achieving a periodic domain structure in ferroelectric materials to tailor the macroscopic properties or realize new functions has always been a hot topic. However, methods to construct periodic domain structures, such as epitaxial growth, direct writing by scanning tips, and the patterned electrode method, are difficult or inefficient to implement in emerging molecular ferroelectrics, which have the advantages of lightweight, flexibility, biocompatibility, etc. An efficient method for constructing and controlling periodic domain structures is urgently needed to facilitate the development of molecular ferroelectrics in nanoelectronic devices. In this work, it is demonstrated that large-area, periodic and controllable needle-like domain structures can be achieved in thin films of the molecular ferroelectric trimethylchloromethyl ammonium trichlorocadmium (TMCM-CdCl3 ) upon the application of tensile strain. The domain evolution under various tensile strains can be clearly observed, and such processes are accordingly identified. Furthermore, the domain wall exhibits a superior piezoelectric response, with up to fivefold enhancement compared to that of the pristine samples. Such large-area tunable periodic domain structure and abnormally strong piezoresponse are not only of great interests in fundamental studies, but also highly important in the future applications in functional molecular materials.

16.
Biomater Res ; 26(1): 87, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550545

RESUMO

BACKGROUND: Volumetric muscle loss (VML) due to various reasons may cause motor dysfunction and tissue engineering has been proposed for muscle regeneration. However, developing three-dimensional (3D) tissue-engineered scaffolds that can mimic oriented cell growth of muscle tissues are challenging for regeneration medicine. Herein, we propose a novel self-curling 3D oriented scaffold (SCOS) composed of fish derived gelatin methacrylate (GelMA) and fish scales for repairing skeletal muscles. METHODS: Fish scales of tilapia were decellularized and decalcified. Then, SCOSs were constructed by ultraviolet-coating methylated fish gelatin on the back of fish scales. C2C12 myoblasts were cultured on SCOSs, and after induction of myogenic differentiation, SCOS/C2C12 transplants were prepared for in vivo experiments. RESULTS: Decellularized and decalcified fish scales (DDFSs) became soft and retained the original oriented microgroove surface structure that could induce oriented cell growth. SCOSs could self-curl into 3D structures when immersing in culture medium due to different swelling properties of fish GelMA and DDFSs. Cell experiments demonstrated that SCOSs enhanced the oriented growth and myogenic differentiation of C2C12 myoblasts. By integrating SCOSs and myogenic differentiated C2C12 myoblasts, the resultant SCOS/C2C12 transplants promoted de novo muscle regeneration and functional restoration of muscle activity in the mouse model of VML. CONCLUSIONS: Our results suggest that SCOSs loaded with myogenic differentiated C2C12 myoblasts can promote muscle regeneration in mice with skeletal muscle injuries, indicating application prospects of such scaffolds in muscle tissue engineering and other related fields.

17.
J Mater Chem B ; 9(43): 8980-8993, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494055

RESUMO

Bone tissue engineering (BTE) is a promising approach to recover insufficient bone in dental implantations. However, the clinical application of BTE scaffolds is limited by their low mechanical strength and lack of osteoinduction. In an attempt to circumvent these limitations and improve osteogenesis, we introduced magnetic iron oxide nanoparticles (IONPs) into a core-shell porous electrospun scaffold and evaluated their impact on the physical, mechanical, and biological properties of the scaffold. We used poly(lactic-co-glycolic acid)/polycaprolactone/beta-tricalcium phosphate (PPT) scaffolds with and without γ-Fe2O3 encapsulation, namely PPT-Fe scaffolds and PPT scaffolds, respectively. The γ-Fe2O3 used in the PPT-Fe scaffolds was coated with polyglucose sorbitol carboxymethylether and was biocompatible. Structurally, PPT-Fe scaffolds showed uniform iron distribution encapsulated within the resorbable PPT scaffolds, and these scaffolds supported sustainable iron release. Furthermore, compared with PPT scaffolds, PPT-Fe scaffolds showed significantly better physical and mechanical properties, including wettability, superparamagnetism, hardness, tensile strength, and elasticity modulus. In vitro tests of rat adipose-derived mesenchymal stem cells (rADSCs) seeded onto the scaffolds showed increased expression of integrin ß1, alkaline phosphatase, and osteogenesis-related genes. In addition, enhanced in vivo bone regeneration was observed after implanting PPT-Fe scaffolds in rat calvarial bone defects. Thus, we can conclude that the incorporation of IONPs into porous scaffolds for long-term release can provide a new strategy for BTE scaffold optimization and is a promising approach that can offer enhanced osteogenic capacity in clinical applications.


Assuntos
Regeneração Óssea , Materiais Revestidos Biocompatíveis/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Relação Dose-Resposta a Droga , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
18.
Biomaterials ; 270: 120687, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33540170

RESUMO

Pancreatic ß-cells have been reported to be mechanosensitive to cellular microenvironments, and subjecting the cells to more physiologically relevant microenvironments can produce better results than when subjecting them to the conventional two-dimensional (2D) cell-culture conditions. In this work, we propose a novel three-dimensional (3D) strategy for inducing multicellular spheroid formation based on hydrogels with tunable mechanical and interfacial properties. The results indicate that MIN6 cells can sense the substrates and form tightly clustered monolayers or multicellular spheroids on hydrogels with tunable physical properties. Compared to the conventional 2D cell-culture system, the glucose sensitivities of the MIN6 cells cultured in the 3D culture model is enhanced greatly and their insulin content (relative to the amount of protein) is increased 7.3-7.9 folds. Moreover, the relative gene and protein expression levels of some key factors such as Pdx1, NeuroD1, Piezo1, and Rac1 in the MIN6 cells are significantly higher on the 3D platform, compared to the 2D control group. We believe that this 3D cell-culture system developed for the generation of multicellular spheroids will be a promising platform for diabetes treatment in clinical islet transplantation.


Assuntos
Hidrogéis , Células Secretoras de Insulina , Técnicas de Cultura de Células , Insulina , Esferoides Celulares
19.
ACS Appl Mater Interfaces ; 11(43): 40461-40469, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31588737

RESUMO

Periodic arrays of silicon nanowires/nanopillars are of great technological importance in developing novel electrical, optical, biosensing, and electromechanical devices. Here, we report a novel two-level colloidal lithography technology for making periodic arrays of single-crystalline silicon nanopillars (or nanocolumns) over large areas. Spin-coated monolayer silica colloidal crystals with unusual nonclose-packed structures are utilized as first-level etching masks in generating ordered polymer posts whose sizes can be much smaller than the templating silica microspheres. These polymer posts can then be used as second-level structural templates in fabricating highly ordered silicon nanopillars with broadly tunable geometries by employing metal-assisted chemical etching. As the silicon nanopillars are produced by direct wet etching on the surface of a single-crystalline silicon wafer, they are relatively free of volume defects and thus their bending strength approaches the predicted theoretical maximum. Most importantly, the unique nonclose-packed structure of the original colloidal template and the close-to-ideal mechanical property enables the formation of unusual open-structured hierarchical assemblies of rigid silicon nanopillars during water evaporation. Both experiments and numerical finite-difference time-domain modeling confirm the importance of high aspect ratios of the templated silicon nanopillars in achieving superior broadband antireflection properties. The large fraction of entrapped air in the hierarchically assembled silicon nanopillars further facilitates to accomplish superhydrophobic surface states, promising for developing self-cleaning antireflection coatings for many important optoelectronic applications.

20.
Theranostics ; 8(18): 4870-4883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429874

RESUMO

Since the expected therapeutic results of ischemic stroke are strictly time dependent, early and accurate diagnosis as well as short intervals between diagnosis and treatment are key factors for the survival of stroke patients. In this study, we fabricated platelet (PLT) membrane-derived biomimetic nanobubbles (PNBs) for timely perfusion intervention and ultrasound imaging of acute ischemic stroke. Methods: The PNBs are fabricated by sonication-assisted reassembly of repeatedly freeze-thawed live platelet-derived PLT membrane vesicles (PMVs). The TEM, SEM, EDS and DLS were used to analyze the morphology and physicochemical properties of PNBs. The HPLC and LC-MS/MS were applied to confirm the lipid and protein compositions of PNBs. The in vitro macrophage uptake and platelet aggregation of PNBs were designed to examine the immune escape and thrombotic response characteristics. Furthermore, based on a photothrombotic ischemic stroke mouse model, the biodistribution, stroke microvascular network change, as well as cerebral blood flow of PNBs were studied by using near-infrared fluorescence imaging, multimodal optical imaging, and full-field laser perfusion imager. Finally, we assessed the brain ultrasound imaging of PNBs with a high-resolution micro-imaging system using both B-mode and contrast mode. Results: The natural lipid and protein components isolated from PLT membrane endow the PNBs with accurate lesion-targeting ability. The preferentially accumulated PNBs exhibit microvascular bio-remodeling ability of the stroke lesion, which is critical for recanalization of the obstructed vessels to protect the neural cells around the ischemic region of the stroke. Furthermore, with the increased accumulation of PNBs clusters in the lesion, PNBs in the lesion can be monitored by real-time contrast-enhanced ultrasound imaging to indicate the severity and dynamic development of the stroke. Conclusions: In summary, platelet membrane-based nanobubbles for targeting acute ischemic lesions were developed as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. This biomimetic PNBs theranostic strategy will be valuable for ischemic stroke patients in the future.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Nanomedicina Teranóstica/métodos , Ultrassonografia/métodos , Animais , Biomimética , Plaquetas/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Humanos , Camundongos , Microbolhas , Microscopia Eletrônica , Análise Espectral , Espectrometria de Massas em Tandem , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA