Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(14): 9782-9789, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32530638

RESUMO

Integration of the sensitivity-relevant electronics of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers on a single chip is a promising approach to improve the limit of detection, especially for samples in the nanoliter and subnanoliter range. Here, we demonstrate the cointegration on a single silicon chip of the front-end electronics of NMR and ESR detectors. The excitation/detection planar spiral microcoils of the NMR and ESR detectors are concentric and interrogate the same sample volume. This combination of sensors allows one to perform dynamic nuclear polarization (DNP) experiments using a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR experiments on liquid samples having a volume of about 1 nL performed at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are achieved on TEMPOL/H2O solutions at room temperature. The use of state-of-the-art submicrometer integrated circuit technologies should allow the future extension of the single-chip DNP microsystem approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding to the strongest static magnetic fields currently available. Particularly interesting is the possibility to create arrays of such sensors for parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter samples.

2.
J Magn Reson ; 278: 113-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28388496

RESUMO

We report on the design and characterization of single-chip electron spin resonance (ESR) detectors operating at 50GHz, 92GHz, and 146GHz. The core of the single-chip ESR detectors is an integrated LC-oscillator, formed by a single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide semiconductor field effect transistors used as negative resistance network. On the same chip, a second, nominally identical, LC-oscillator together with a mixer and an output buffer are also integrated. Thanks to the slightly asymmetric capacitance of the mixer inputs, a signal at a few hundreds of MHz is obtained at the output of the mixer. The mixer is used for frequency down-conversion, with the aim to obtain an output signal at a frequency easily manageable off-chip. The coil diameters are 120µm, 70µm, and 45µm for the U-band, W-band, and the D-band oscillators, respectively. The experimental frequency noises at 100kHz offset from the carrier are 90Hz/Hz1/2, 300Hz/Hz1/2, and 700Hz/Hz1/2 at 300K, respectively. The ESR spectra are obtained by measuring the frequency variations of the single-chip oscillators as a function of the applied magnetic field. The experimental spin sensitivities, as measured with a sample of α,γ-bisdiphenylene-ß-phenylallyl (BDPA)/benzene complex, are 1×108spins/Hz1/2, 4×107spins/Hz1/2, 2×107spins/Hz1/2 at 300K, respectively. We also show the possibility to perform experiments up to 360GHz by means of the higher harmonics in the microwave field produced by the integrated single-chip LC-oscillators.

3.
Rev Sci Instrum ; 86(4): 044703, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933876

RESUMO

In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm(2). It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of about 150 µm external diameter, a (1)H spin sensitivity of about 1.5 × 10(13) spins/Hz(1/2) is achieved at 7 T.

4.
J Magn Reson ; 247: 96-103, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25261743

RESUMO

We report on the design and characterization of a single-chip electron spin resonance detector, operating at a frequency of about 20 GHz and in a temperature range extending at least from 300 K down to 4 K. The detector consists of an LC oscillator formed by a 200 µm diameter single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K, the oscillator has a frequency noise of 20 Hz/Hz(1/2) at 100 kHz offset from the 20 GHz carrier. At 4 K, the frequency noise is about 1 Hz/Hz(1/2) at 10 kHz offset. The spin sensitivity measured with a sample of DPPH is 10(8)spins/Hz(1/2) at 300 K and down to 10(6)spins/Hz(1/2) at 4 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA