Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(1): 178-186.e5, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270109

RESUMO

Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. Here we describe FuncLib, an automated method for designing multipoint mutations at enzyme active sites using phylogenetic analysis and Rosetta design calculations. We applied FuncLib to two unrelated enzymes, a phosphotriesterase and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from the wild-type and from one another. Several dozen designs with only 3-6 active-site mutations exhibited 10- to 4,000-fold higher efficiencies with a range of alternative substrates, including hydrolysis of the toxic organophosphate nerve agents soman and cyclosarin and synthesis of butyryl-CoA. FuncLib is implemented as a web server (http://FuncLib.weizmann.ac.il); it circumvents iterative, high-throughput experimental screens and opens the way to designing highly efficient and diverse catalytic repertoires.


Assuntos
Domínio Catalítico , Coenzima A Ligases/química , Hidrolases de Triester Fosfórico/química , Engenharia de Proteínas , Acil Coenzima A/biossíntese , Acil Coenzima A/química , Catálise , Coenzima A Ligases/genética , Cinética , Mutação , Compostos Organofosforados/química , Hidrolases de Triester Fosfórico/genética , Filogenia , Software , Especificidade por Substrato
2.
J Biol Chem ; 299(6): 104794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164155

RESUMO

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Assuntos
Secretases da Proteína Precursora do Amiloide , Complexos Multiproteicos , Presenilina-1 , Sulfonamidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/antagonistas & inibidores , Presenilina-1/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Sulfonamidas/farmacologia , Especificidade por Substrato , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
3.
J Transl Med ; 22(1): 14, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172991

RESUMO

BACKGROUND: Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They stand as promising targets for personalized therapeutic cancer vaccines. The identification process for neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in tumor genomics. However, in-silico strategies for selecting immunogenic neoantigens still have very low accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex (MHC) molecules, which is key but not the sole determinant for immunogenicity. Moreover, the therapeutic potential of neoantigen-based vaccines may be enhanced using an optimal delivery platform that elicits robust de novo immune responses. METHODS: We developed a novel neoantigen selection pipeline based on existing software combined with a novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural features of the peptide/MHC-I interaction, as well as the interaction between the peptide/MHC-I complex and the TCR, in its prediction strategy. Moreover, to maximize neoantigens' therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform that elicits robust de novo immune responses and bypasses central and peripheral tolerance. RESULTS: We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-Like Particles (VLPs) expressing a high copy number of each in silico selected neoantigen. We tested different neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to generate new immunogenic specificities. NeoVLPs were used in in vivo immunogenicity and tumor challenge experiments. CONCLUSIONS: Our results indicate the relevance of incorporating other immunogenic determinants beyond the binding of neoantigens to MHC-I. Thus, neoVLPs loaded with neoantigens enhancing the interaction with the TCR can promote the generation of de novo antitumor-specific immune responses, resulting in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Animais , Camundongos , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia/métodos
4.
Appl Microbiol Biotechnol ; 108(1): 61, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183484

RESUMO

Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.


Assuntos
Glicerol , Álcoois Açúcares , Biocatálise , Bioprospecção , Catálise
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848541

RESUMO

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Especificidade por Substrato/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/fisiologia , Microscopia Crioeletrônica/métodos , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células HeLa , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
6.
Biochemistry ; 62(2): 429-436, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881507

RESUMO

Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.


Assuntos
Dissacarídeos , Oxirredutases , Oxirredutases/metabolismo , Oxirredução , Dissacarídeos/química , Domínio Catalítico , Monossacarídeos , Flavina-Adenina Dinucleotídeo/metabolismo
7.
J Chem Inf Model ; 63(6): 1668-1674, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36892986

RESUMO

Machine learning-based protein structure prediction algorithms, such as RosettaFold and AlphaFold2, have greatly impacted the structural biology field, arousing a fair amount of discussion around their potential role in drug discovery. While there are few preliminary studies addressing the usage of these models in virtual screening, none of them focus on the prospect of hit-finding in a real-world virtual screen with a model based on low prior structural information. In order to address this, we have developed an AlphaFold2 version where we exclude all structural templates with more than 30% sequence identity from the model-building process. In a previous study, we used those models in conjunction with state-of-the-art free energy perturbation methods and demonstrated that it is possible to obtain quantitatively accurate results. In this work, we focus on using these structures in rigid receptor-ligand docking studies. Our results indicate that using out-of-the-box Alphafold2 models is not an ideal scenario for virtual screening campaigns; in fact, we strongly recommend to include some post-processing modeling to drive the binding site into a more realistic holo model.


Assuntos
Aprendizado Profundo , Conformação Proteica , Ligantes , Proteínas/química , Algoritmos , Ligação Proteica , Simulação de Acoplamento Molecular
8.
Proc Natl Acad Sci U S A ; 117(40): 24790-24793, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32948692

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is considered a zoonotic pathogen mainly transmitted human to human. Few reports indicate that pets may be exposed to the virus. The present report describes a cat suffering from severe respiratory distress and thrombocytopenia living with a family with several members affected by COVID-19. Clinical signs of the cat prompted humanitarian euthanasia and a detailed postmortem investigation to assess whether a COVID-19-like disease was causing the condition. Necropsy results showed the animal suffered from feline hypertrophic cardiomyopathy and severe pulmonary edema and thrombosis. SARS-CoV-2 RNA was only detected in nasal swab, nasal turbinates, and mesenteric lymph node, but no evidence of histopathological lesions compatible with a viral infection were detected. The cat seroconverted against SARS-CoV-2, further evidencing a productive infection in this animal. We conclude that the animal had a subclinical SARS-CoV-2 infection concomitant to an unrelated cardiomyopathy that led to euthanasia.


Assuntos
Betacoronavirus/isolamento & purificação , Cardiomiopatia Hipertrófica/veterinária , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , Animais , COVID-19 , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/virologia , Gatos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Evolução Fatal , Humanos , Achados Incidentais , Pneumonia Viral/complicações , Pneumonia Viral/patologia , SARS-CoV-2
9.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762071

RESUMO

Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF). The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides, such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89 (LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also achieved with lid swapping. This study reinforces the importance of the lid domains and their amino acid compositions in determining the substrate specificity of lipases, but the generalization of the lid domain swapping between lipases or the introduction of specific mutations in the lid domain to improve lipase activity may require further investigation.


Assuntos
Actinomycetales , Lipase , Lipase/genética , Hidrólise , Esterases , Aminoácidos
10.
Angew Chem Int Ed Engl ; 62(24): e202302844, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37022339

RESUMO

A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h-1 ), catalyst performance (up to 84 s-1 and more than 120 000 catalytic turnovers). Molecular modelling of the enzyme-substrate interaction puts a basis for the mechanistic understanding of AaeUPO selectivity.

11.
Bioinformatics ; 37(3): 334-341, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32761082

RESUMO

MOTIVATION: Single protein residue mutations may reshape the binding affinity of protein-protein interactions. Therefore, predicting its effects is of great interest in biotechnology and biomedicine. Unfortunately, the availability of experimental data on binding affinity changes upon mutation is limited, which hampers the development of new and more precise algorithms. Here, we propose UEP, a classifier for predicting beneficial and detrimental mutations in protein-protein complexes trained on interactome data. RESULTS: Regardless of the simplicity of the UEP algorithm, which is based on a simple three-body contact potential derived from interactome data, we report competitive results with the gold standard methods in this field with the advantage of being faster in terms of computational time. Moreover, we propose a consensus selection procedure by involving the combination of three predictors that showed higher classification accuracy in our benchmark: UEP, pyDock and EvoEF1/FoldX. Overall, we demonstrate that the analysis of interactome data allows predicting the impact of protein-protein mutations using UEP, a fast and reliable open-source code. AVAILABILITY AND IMPLEMENTATION: UEP algorithm can be found at: https://github.com/pepamengual/UEP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software , Algoritmos , Mutação , Proteínas/genética
12.
J Chem Inf Model ; 62(18): 4351-4360, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36099477

RESUMO

The availability of AlphaFold2 has led to great excitement in the scientific community─particularly among drug hunters─due to the ability of the algorithm to predict protein structures with high accuracy. However, beyond globally accurate protein structure prediction, it remains to be determined whether ligand binding sites are predicted with sufficient accuracy in these structures to be useful in supporting computationally driven drug discovery programs. We explored this question by performing free-energy perturbation (FEP) calculations on a set of well-studied protein-ligand complexes, where AlphaFold2 predictions were performed by removing all templates with >30% identity to the target protein from the training set. We observed that in most cases, the ΔΔG values for ligand transformations calculated with FEP, using these prospective AlphaFold2 structures, were comparable in accuracy to the corresponding calculations previously carried out using crystal structures. We conclude that under the right circumstances, AlphaFold2-modeled structures are accurate enough to be used by physics-based methods such as FEP in typical lead optimization stages of a drug discovery program.


Assuntos
Aprendizado Profundo , Simulação de Dinâmica Molecular , Ligantes , Modelos Estruturais , Estudos Prospectivos , Ligação Proteica , Proteínas/química , Termodinâmica
13.
Chem Phys Lett ; 788: 139294, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34961797

RESUMO

The SARS-CoV-2 papain-like (PLpro) protease is essential for viral replication. We investigated potential antiviral effects of hypericin relative to the well-known noncovalent PLpro inhibitor GRL-0617. Molecular dynamics and PELE Monte Carlo simulations highlight favourable binding of hypericin and GRL-0617 to the naphthalene binding pocket of PLpro. Although not potent as GRL-0617 (45.8 vs 1.6 µM for protease activity, respectively), in vitro fluorogenic enzymatic assays with hypericin show concentration-dependent inhibition of both PLpro protease and deubiquitinating activities. Given its use in supplementations and the FDA conditional approval of a synthetic version, further evaluation of hypericin as a potential SARS-CoV-2 antiviral is warranted.

14.
Vet Pathol ; 59(4): 613-626, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34955064

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease, but it can also affect other organs including the central nervous system. Several animal models have been developed to address different key questions related to Coronavirus Disease 2019 (COVID-19). Wild-type mice are minimally susceptible to certain SARS-CoV-2 lineages (beta and gamma variants), whereas hACE2-transgenic mice succumb to SARS-CoV-2 and develop a fatal neurological disease. In this article, we aimed to chronologically characterize SARS-CoV-2 neuroinvasion and neuropathology. Necropsies were performed at different time points, and the brain and olfactory mucosa were processed for histopathological analysis. SARS-CoV-2 virological assays including immunohistochemistry were performed along with a panel of antibodies to assess neuroinflammation. At 6 to 7 days post inoculation (dpi), brain lesions were characterized by nonsuppurative meningoencephalitis and diffuse astrogliosis and microgliosis. Vasculitis and thrombosis were also present and associated with occasional microhemorrhages and spongiosis. Moreover, there was vacuolar degeneration of virus-infected neurons. At 2 dpi, SARS-CoV-2 immunolabeling was only found in the olfactory mucosa, but at 4 dpi intraneuronal virus immunolabeling had already reached most of the brain areas. Maximal distribution of the virus was observed throughout the brain at 6 to 7 dpi except for the cerebellum, which was mostly spared. Our results suggest an early entry of the virus through the olfactory mucosa and a rapid interneuronal spread of the virus leading to acute encephalitis and neuronal damage in this mouse model.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Doenças dos Roedores , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/patologia , COVID-19/veterinária , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/veterinária , Peptidil Dipeptidase A/metabolismo , Doenças dos Roedores/patologia , SARS-CoV-2
15.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555731

RESUMO

Computer simulation techniques are gaining a central role in molecular pharmacology. Due to several factors, including the significant improvements of traditional molecular modelling, the irruption of machine learning methods, the massive data generation, or the unlimited computational resources through cloud computing, the future of pharmacology seems to go hand in hand with in silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the unconventional Monte Carlo PELE software and on its coupling with machine learning techniques. We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive water sampling and fragPELE, for fragment growing.


Assuntos
Descoberta de Drogas , Software , Simulação por Computador , Descoberta de Drogas/métodos , Modelos Moleculares , Método de Monte Carlo , Desenho de Fármacos
16.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362119

RESUMO

Proteases are abundant in prokaryotic genomes (~10 per genome), but their recovery encounters expression problems, as only 1% can be produced at high levels; this value differs from that of similarly abundant esterases (1-15 per genome), 50% of which can be expressed at good levels. Here, we design a catalytically efficient artificial protease that can be easily produced. The PluriZyme EH1AB1 with two active sites supporting the esterase activity was employed. A Leu24Cys mutation in EH1AB1, remodelled one of the esterase sites into a proteolytic one through the incorporation of a catalytic dyad (Cys24 and His214). The resulting artificial enzyme, EH1AB1C, efficiently hydrolysed (azo)casein at pH 6.5-8.0 and 60-70 °C. The presence of both esterase and protease activities in the same scaffold allowed the one-pot cascade synthesis (55.0 ± 0.6% conversion, 24 h) of L-histidine methyl ester from the dipeptide L-carnosine in the presence of methanol. This study demonstrates that active sites supporting proteolytic activity can be artificially introduced into an esterase scaffold to design easy-to-produce in-one protease-esterase PluriZymes for cascade reactions, namely, the synthesis of amino acid esters from dipeptides. It is also possible to design artificial proteases with good production yields, in contrast to natural proteases that are difficult to express.


Assuntos
Esterases , Peptídeo Hidrolases , Esterases/metabolismo , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Domínio Catalítico/genética , Ésteres/metabolismo , Concentração de Íons de Hidrogênio
17.
Angew Chem Int Ed Engl ; 61(37): e202207344, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734849

RESUMO

Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis. Herein we present the development of a PluriZyme, TR2 E2 , with efficient native transaminase (kcat : 69.49±1.77 min-1 ) and artificial esterase (kcat : 3908-0.41 min-1 ) activities integrated into a single scaffold, and evaluate its utility in a cascade reaction. TR2 E2 (pHopt : 8.0-9.5; Topt : 60-65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-trifluorophenyl)butanoate into 3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. The reaction proceeds through the conversion of the ß-keto ester into the ß-keto acid at the hydrolytic site and subsequently into the ß-amino acid (e.e. >99 %) at the transaminase site. The catalytic power of the TR2 E2 PluriZyme was proven with a set of ß-keto esters, demonstrating the potential of such designs to address bioinspired cascade reactions.


Assuntos
Aminoácidos , Transaminases , Catálise , Esterases , Ésteres/química , Hidrólise
18.
Chemistry ; 26(21): 4798-4804, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31999372

RESUMO

A maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions. Homogeneous populations of alkyne-modified laccases are obtained through the reductive amination of a unique surface-accessible lysine residue selectively engineered near either one or the other of the two copper centers in enzyme variants. Immobilization of the site-specific alkynated enzymes is achieved by copper-catalyzed click reaction on azido-modified CNTs. A highly efficient reduction of O2 at low overpotential and catalytic current densities over -3 mA cm-2 are obtained by minimizing the distance from the electrode surface to the trinuclear cluster.


Assuntos
Cobre/química , Lacase/química , Nanotubos de Carbono/química , Oxigênio/química , Catálise , Química Click , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Oxirredução
19.
J Chem Inf Model ; 60(11): 5529-5539, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32644807

RESUMO

We present a multistep protocol, combining Monte Carlo and molecular dynamics simulations, for the estimation of absolute binding free energies, one of the most significant challenges in computer-aided drug design. The protocol is based on an initial short enhanced Monte Carlo simulation, followed by clustering of the ligand positions, which serve to identify the most relevant states of the unbinding process. From these states, extensive molecular dynamics simulations are run to estimate an equilibrium probability distribution obtained with Markov State Models, which is subsequently used to estimate the binding free energy. We tested the procedure on two different protein systems, the Plasminogen kringle domain 1 and Urokinase, each with multiple ligands, for an aggregated molecular dynamics length of 760 µs. Our results indicate that the initial sampling of the unbinding events largely facilitates the convergence of the subsequent molecular dynamics exploration. Moreover, the protocol is capable to properly rank the set of ligands examined, albeit with a significant computational cost for the, more realistic, Urokinase complexes. Overall, this work demonstrates the usefulness of combining enhanced sampling methods with regular simulation techniques as a way to obtain more reliable binding affinity estimates.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Entropia , Ligantes , Método de Monte Carlo , Ligação Proteica , Termodinâmica
20.
J Chem Inf Model ; 60(3): 1728-1736, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32027130

RESUMO

The early stages of drug discovery rely on hit-to-lead programs, where initial hits undergo partial optimization to improve binding affinities for their biological target. This is an expensive and time-consuming process, requiring multiple iterations of trial and error designs, an ideal scenario for applying computer simulation. However, most state-of-the-art modeling techniques fail to provide a fast and reliable answer to the Induced-Fit protein-ligand problem. To aid in this matter, we present FragPELE, a new tool for in silico hit-to-lead drug design, capable of growing a fragment from a bound core while exploring the protein-ligand conformational space. We tested the ability of FragPELE to predict crystallographic data, even in cases where cryptic sub-pockets open because of the presence of particular R-groups. Additionally, we evaluated the potential of the software on growing and scoring five congeneric series from the 2015 FEP+ dataset, comparing them to FEP+, SP and Induced-Fit Glide, and MMGBSA simulations. Results show that FragPELE could be useful not only for finding new cavities and novel binding modes in cases where standard docking tools cannot but also to rank ligand activities in a reasonable amount of time and with acceptable precision.


Assuntos
Desenho de Fármacos , Software , Sítios de Ligação , Simulação por Computador , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA