Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Sci Technol ; 58(18): 7870-7879, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647530

RESUMO

Sparingly-soluble phosphate rock (PR), a raw material for P-fertilizer production, can be effectively utilized by the As-hyperaccumulator Pteris vittata but not most plants. In this study, we investigated the associated mechanisms by measuring dissolved organic carbon (DOC) and acid phosphatase in the rhizosphere, and nutrient uptake and gene expression related to the As metabolism in P. vittata. The plants were grown in a soil containing 200 mg kg-1 As and/or 1.5% PR for 30 days. Compared to the As treatment, the P. vittata biomass was increased by 33% to 4.6 g plant-1 in the As+PR treatment, corresponding to 27% decrease in its frond oxidative stress as measured by malondialdehyde. Due to PR-enhanced DOC production in the rhizosphere, the Ca, P, and As contents in P. vittata fronds were increased by 17% to 9.7 g kg-1, 29% to 5.0 g kg-1, and 57% to 1045 mg kg-1 in the As+PR treatment, thereby supporting its better growth. Besides, PR-induced rhizosphere pH increase from 5.0 to 6.9 promoted greater P uptake by P. vittata probably via upregulating low-affinity P transporters PvPTB1;1/1;2 by 3.7-4.1 folds. Consequently, 29% lower available-P induced the 3.3-fold upregulation of high-affinity P transporter PvPht1;3 in the As+PR treatment, which was probably responsible for the 58% decrease in available-As content in the rhizosphere. Consistent with the enhanced As translocation and sequestration, arsenite antiporters PvACR3/3;3 were upregulated by 1.8-4.4 folds in the As+PR than As treatment. In short, sparingly-soluble PR enhanced the Ca, P, and As availability in P. vittata rhizosphere and improved their uptake via upregulating genes related to As metabolism, suggesting its potential application for improving phytoremediation in As-contaminated soils.


Assuntos
Arsênio , Fosfatos , Pteris , Rizosfera , Arsênio/metabolismo , Pteris/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Solo/química
2.
Environ Res ; 243: 117842, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065384

RESUMO

The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Poeira/análise , Cádmio , Cidades , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Medição de Risco/métodos , Poluentes do Solo/análise
3.
Plant Cell Rep ; 43(3): 80, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411713

RESUMO

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.


Assuntos
Ecossistema , Proteômica , Inteligência Artificial , Perfilação da Expressão Gênica , Metais/toxicidade , Solo
4.
J Environ Manage ; 351: 119763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071921

RESUMO

Rhizosphere is a soil volume of high spatio-temporal heterogeneity and intensive plant-soil-microbial interactions, for which visualization and process quantification is of highest scientific and applied relevance, but still very challenging. A novel methodology for quick assessment of two-dimensional distribution of available phosphorus (P) in rhizosphere was suggested, tested, and development up to the application platform. Available P was firstly trapped by an in-situ diffusive gradients in thin-films (DGT) sampler with precipitated zirconia as the binding gel, and subsequently, the loaded gel was analyzed with an optimized colorimetric imaging densitometry (CID). The imaging platform was established linking: i) DGT, ii) planar optode, and iii) soil zymography techniques to simultaneously determine available P, oxygen, and acid phosphatase in rhizosphere at sub-millimeter spatial scales. The DGT identified available P level in rice rhizosphere were spatially overlapping to the localized redox hotspots and phosphatase activity. The spatial relationship between available P and acid phosphatase activity was dependent on root development. The root radial oxygen loss (ROL) remained active during the experimental observations (2-3 days), while a flux of available P of 10 pg cm-2 s-1 was visualized within 2-3 mm of roots, confirming the correlative response of rice roots to oxygen secretion and P uptake. Summarizing, the established imaging platform is suitable to capture spatial heterogeneity and temporal dynamics of root activities, nutrient bioavailability, ROL and enzyme activities in rhizosphere.


Assuntos
Oryza , Fósforo , Fósforo/metabolismo , Rizosfera , Solo , Oxigênio/metabolismo , Fosfatase Ácida/metabolismo , Raízes de Plantas/metabolismo
5.
Environ Sci Technol ; 57(32): 11977-11987, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526086

RESUMO

While carbon dots (CDs) have the potential to support the agricultural revolution, it remains obscure about their environmental fate and bioavailability by plants. Fungal laccase-mediated biotransformation of carbon nanomaterials has received little attention despite its known capacity to eliminate recalcitrant contaminants. Herein, we presented the initial investigation into the transformation of CDs by fungal laccase. The degradation rates of CDs were determined to be first-order in both substrate and enzyme. Computational docking studies showed that CDs preferentially bonded to the pocket of laccase on the basal plane rather than the edge through hydrogen bonds and hydrophobic interactions. Electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) and other characterizations revealed that the phenolic/amino lignins and tannins portions in CDs are susceptible to laccase transformation, resulting in graphitic structure damage and smaller-sized fragments. By using the 13C stable isotope labeling technique, we quantified the uptake and translocation of 13C-CDs by mung bean plants. 13C-CDs (10 mg L-1) accumulated in the root, stem, and leaf were estimated to be 291, 239, and 152 µg g-1 at day 5. We also evidenced that laccase treatment alters the particle size and surface chemistry of CDs, which could facilitate the uptake of CDs by plants and reduce their nanotoxicity to plants.


Assuntos
Carbono , Lacase , Lacase/química , Lacase/metabolismo , Biodegradação Ambiental , Espectrometria de Massas , Biotransformação , Trametes/metabolismo
6.
Ecotoxicol Environ Saf ; 255: 114789, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933484

RESUMO

Exposure of human to parabens (commonly used preservatives) is inevitable due to their extensively applied in numerous consumer products. Thus, a reliable noninvasive matrix reflecting long-term exposure to parabens is essential for human biomonitoring study. Human nails are potentially a valuable alternative for measuring intergrated exposure to parabens. In this work, we collected 100 paired nail and urine samples from university students in Nanjing, China, and measured simultaneously for six parent parabens and four metabolites. Methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) were three predominant paraben analogue in both matrices, with the median concentrations being 12.9, 0.753, and 3.42 ng/mL in urine, and 1540, 154, and 961 ng/g in nail, respectively, while 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) were the most abundant metabolites (median values of 143 and 35.9 ng/mL, respectively) in urine. Gender-related analysis suggested that females exposed to more higher parabens than males. Significantly positive correlations were found between levels of MeP, PrP, EtP, and OH-MeP (r = 0.54-0.62, p < 0.01) in paired urine and nail samples. Our result here suggests that human nails, as an emerging biospecimen, are a potentially valuable biological matrix to evaluate human long-term exposure to parabens.


Assuntos
Unhas , Parabenos , Masculino , Feminino , Humanos , Parabenos/análise , Unhas/química , Exposição Ambiental/análise
7.
Ecotoxicol Environ Saf ; 256: 114885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030050

RESUMO

In vitro strategies have widely been used to assess bioaccessibility of organic pollutants in soils. However, studies for comparing in vitro models with in vivo data are still limited. In this study, Dichlorodiphenyltrichloroethane (DDT) and its metabolites (called as DDTr) bioaccessibility in nine contaminated soils were measured using physiologically based extraction test (PBET), in vitro digestion model (IVD), and Deutsches Institut für Normung (DIN) with/without Tenax as an absorptive sink, and DDTr bioavailability was assessed using an in vivo mouse model. Whether or not Tenax was added, DDTr bioaccessibility significantly varied among three methods, suggesting that DDTr bioaccessibility depended on the in vitro method employed. Multiple linear regression analysis indicated that sink, intestinal incubation time and bile content are identified to be the dominant factors in controlling DDTr bioaccessibility. Comparison of in vitro and in vivo results demonstrated that DIN assay with Tenax (TI-DIN) provided the best prediction for DDTr bioavailability (r2 = 0.66, slope=0.78). After extending intestinal incubation time to 6 h or increasing bile content to 4.5 g/L (same to DIN assay) of the TI-PBET and TI-IVD assays, the in vivo-in vitro correlation will improved significantly, with r2 = 0.76 and slope= 1.4 for TI-PBET and r2 = 0.84 and slope= 1.9 for TI-IVD under 6 h intestinal incubation, and r2 = 0.59 and slope= 0.96 for TI-PBET and r2 = 0.51 and slope= 1.0 for TI-IVD under 4.5 g/L of bile content. The results suggest that it is essential to understand these key factors influencing bioaccessibility for the development of standardized in vitro methods, which helps to refine the risk assessment of human exposure to contaminants via soil ingestion.


Assuntos
DDT , Poluentes do Solo , Animais , Camundongos , Humanos , DDT/análise , Solo , Disponibilidade Biológica , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
8.
J Environ Manage ; 348: 119435, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890401

RESUMO

Phytoremediation of lead (Pb) contaminated soil is a green technology to reduce Pb exposure and root exudates-derived organic acids play a vital role in this treatment process. In this study, Pb hyperaccumulator Pelargonium hortorum was chosen to investigate root-induced organic acid secretions and their subsequent role in Pb phytoextraction. In the first step, root exudation of P. hortorum was investigated in hydroponic experiments (0.2X Hoagland solution) under control and Pb stress conditions. Possible chemical interactions between Pb and the observed root exudates were then analyzed using Visual MINTEQ modeling. In the next step, the effects of the exogenous application of organic acids on Pb phytoextraction and soil enzymatic activities were studied in a pot experimental setup. Results indicated significant exudation of malic acid > citric acid > oxalic acid > tartaric acid in root exudates of P. hortorum under 50 mg L-1 Pb. Visual MINTEQ modeling results revealed that organic acids directly affect Pb dissolution in the nutrient solution by modulation of solution pH. Experimental results revealed that malic acid and citric acid significantly increased available Pb contents (7.2- and 6.7-folds) in the soil with 1500 mg kg-1 Pb contamination. Whereas, in shoot and root, the highest increase in Pb concentration was observed with citric acid (2.01-fold) and malic (3.75-fold) supplements, respectively. Overall, Pb uptake was notably higher when malic acid was applied (2.8-fold) compared to other organic acids, followed by citric acid (2.7-fold). In the case of soil enzymatic activities, oxalic acid significantly improved dehydrogenase, alkaline phosphatase, and microbial biomass by 1.6-, 1.4- and 1.3-folds, respectively. The organic acids were successful in reviving enzyme activity in Pb-contaminated soil, and might thus be used for long-term soil regeneration.


Assuntos
Chumbo , Poluentes do Solo , Solo , Ácido Cítrico , Biodegradação Ambiental , Oxalatos , Poluentes do Solo/análise
9.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121644

RESUMO

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Assuntos
Arsênio , Arsenitos , Pteris , Selênio , Poluentes do Solo , Antiporters/metabolismo , Antiporters/farmacologia , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arseniatos , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/genética , Pteris/metabolismo , Ácido Selênico , Selênio/metabolismo , Solo , Poluentes do Solo/metabolismo
10.
Bull Environ Contam Toxicol ; 108(4): 672-677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35039886

RESUMO

Bioaccessibility of hydrophobic organic contaminants (HOCs) from unintentional ingestion of soil is increasingly assessed with in vitro gastrointestinal models incorporating a sorption sink. In this study, the bioaccessibility of DDTs in contaminated soils (n = 11) was determined using "unfed" unified bioaccessibility method (UBM) and fed organic estimation human simulation test (FOREhST) with/without Tenax as an absorbent. By adding Tenax, the bioaccessibility of DDTs determined using UBM was significantly increased from 4.9-30.6% to 31.6-86.0%. In contrast, the bioaccessibility of DDTs determined using FOREhST without/with Tenax were similar with values of 20.0-60.9% vs 31.5-47.6%, implying that the influence of food components on the absorption efficiency of the sink should not be overlooked. Much high fraction of DDTs (bioaccessibility: 11.7-24.8%) remained in FOREhST supernatant after Tenax collection, suggesting that prediction of bioavailability through bioaccessibility obtained by absorbent needs to be treated with caution when bioaccessibility is determined using a "fed state" in vitro method.


Assuntos
Poluentes do Solo , Disponibilidade Biológica , DDT/metabolismo , Monitoramento Ambiental/métodos , Humanos , Solo/química , Poluentes do Solo/análise
11.
Ecotoxicol Environ Saf ; 227: 112883, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34653941

RESUMO

Arsenic (As) in the aquatic environment is a considerable environmental issue, previous studies have reported the toxic effects of low concentrations (≤ 150 µg/L) of As on fish. However, limited information is available regarding the impact of low levels of As on apoptosis. To evaluate this, zebrafish embryos were exposed to different concentrations (0, 25, 50, 75, and 150 µg/L) of As (arsenite [AsIII] and arsenate [AsV]) for 120 h. Our results indicated that low concentrations of AsIII exposure significantly inhibited the survival of zebrafish larvae, and significantly increased the transcription of Caspase-9 and Caspase-3, the ratio of Bax/Bcl-2 transcription, and protein levels of Caspase-3. In contrast, AsV decreased the ratios of Bax/Bcl-2 transcription and protein levels, as well as protein levels of Caspase-3. Our data demonstrated that AsIII and AsV exert different toxic effects, AsIII induced apoptosis via the mitochondrial pathway and the extrinsic pathway, while AsV induced apoptosis only via the mitochondrial pathway.


Assuntos
Arsênio , Animais , Apoptose , Arseniatos/toxicidade , Arsênio/toxicidade , Larva , Peixe-Zebra
12.
Environ Sci Technol ; 54(6): 3138-3147, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31968168

RESUMO

Behavior of trace elements in flooded/lowland rice soils is controlled by root-zone iron oxidation. Insoluble iron species bind/capture toxic elements, i.e., arsenic. However, it was recently observed that within this territory of arsenic immobilization lies a zone of prolific iron release, accompanied by a significant flux of arsenic in close proximity to rice root apices. Questions still remain on how common this phenomenon is and whether the chemical imaging approaches or soils/cultivars used influence this event. Here, three types of ultrathin/high-resolution diffusive gradient in thin films (DGT) substrates were integrated with oxygen planar optodes in a multilayer system, providing two-dimensional mapping of solute fluxes. The three DGT approaches revealed a consistent/overlapping spatial distribution with localized flux maxima for arsenic, which occurred in all experiments, concomitant with iron mobilization. Soil/porewater microsampling within the rhizosphere revealed no significant elevation in the solid phase's total iron and arsenic concentrations between aerobic and anaerobic zones. Contrary to arsenic, phosphorus bioavailability was shown to decrease in the arsenic/iron flux maxima. Rice roots, in addition to their role in nutrient acquisition, also perform a key sensory function. Flux maxima represent a significant departure from the chemical conditions of the bulk/field environment, but our observations of a complete rhizosphere reveal a mixed mode of root-soil interactions.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Rizosfera , Solo
13.
Ecotoxicol Environ Saf ; 200: 110743, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464441

RESUMO

Gill, as the organ of fish to contact most directly with xenobiotics, suffered more threat. To evaluate the impact of arsenite (AsIII) on the gill of fish, we measured the antioxidative responses (superoxide dismutase (SOD) and catalase (CAT) activities) and oxidative damage (malondialdehyde (MDA) content), histological changes and mRNA transcriptional responses of zebrafish gill, after exposure to AsIII (0, 10, 50, 100, and 150 µg L-1) solutions for 28 days. We found that AsIII increased the activities of CAT by 46%-87%, decreased the activities of SOD and the contents of MDA by 19% and 21%-32%. Furthermore, CuZnSOD and MnSOD mRNA transcription levels were also inhibited, decreasing by 62%-82% and 70%-77%. Besides, ≥ 100 µg L-1 AsIII also caused histological changes (a loss of mucus and desquamation in the surface of the epithelial cells) on zebrafish gill. These results showed that low concentrations of AsIII influenced biochemical and physiological performances of fish gill, which probably aggravates the toxic effect of AsIII on fish.


Assuntos
Arsenitos/toxicidade , Brânquias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Brânquias/metabolismo , Brânquias/patologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Environ Sci Technol ; 50(17): 9070-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27483027

RESUMO

Arsenic hyperaccumulator Pteris vittata (PV) is efficient in taking up As and nutrients from As-contaminated soils. We evaluated the mechanisms used by PV to mobilize As and Fe by examining the impacts of As and root exudates on FeAsO4 solubilization, and As and Fe uptake in four plants: As-hyperaccumulators PV and Pteris multifida (PM), nonhyperaccumulator Pteris ensiformis (PE), and angiosperm plant tomato (Solanum lycopersicum). Phytate and oxalate were dominant in fern plants (>93%), which were 50-83, 15-42, and 0-32 mg kg(-1) phytate and 10-15, 7-26, and 4-12 mg kg(-1) oxalate for PV, PM, and PE respectively, with higher As inducing greater phytate exudation and no phytate being detected in tomato exudates. PV treated with phytate+FeAsO4 had higher As and Fe contents and larger biomass than phytate or FeAsO4 treatment, which were 340 vs 20 and 130 mg kg(-1) As in the fronds and 7900 vs 1600 and 4100 mg kg(-1) Fe in the roots. We hypothesized that As-induced phytate exudation helped PV to take up Fe and As from insoluble FeAsO4 and promoted PV growth. Our study suggests that phytate exudation may be special to fern plants, which may play an important role in enhancing As and nutrient uptake by plants, thereby increasing their efficiency in phytoremediation of As-contaminated soils.


Assuntos
Arsênio , Pteris , Biodegradação Ambiental , Ácido Fítico , Raízes de Plantas/química , Poluentes do Solo , Solubilidade
15.
Anal Chem ; 87(1): 801-7, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25412473

RESUMO

Widespread use of bisphenols (BPs) in our daily life results in their elevated concentrations in waters and the need to study their environmental impact, which demands reliable and robust measurement techniques. Diffusive gradients in thin films (DGT) is an in situ passive sampling approach which provides time-integrated data. In this study we developed a new methodology, based on DGT with activated charcoal (AC) as a binding agent, for measuring three BPs (BPA, BPB, and BPF) which incorporated and tested its performance characteristics. Consistent elution efficiencies were obtained using methanol when concentrations of BPs were low and a methanol-NaOH mixture at high concentrations. The diffusion coefficients of BPA, BPB, and BPF in the diffusive gel, measured using an independent diffusion cell, were 5.03 × 10(-6), 5.64 × 10(-6), and 4.44 × 10(-6) cm(2) s(-1) at 25 °C, respectively. DGT with an AC binding gel had a high capacity for BPA, BPB, and BPF at 192, 140, and 194 µg/binding gel disk, respectively, and the binding performance did not deteriorate with time, up to 254 d after production. Time-integrated concentrations of BPs measured in natural waters using DGT devices with AC gels deployed in situ for 7 d were comparable to concentrations measured by an active sampling method. This study demonstrates that AC-based DGT is an effective tool for in situ monitoring of BPs in waters.


Assuntos
Compostos Benzidrílicos/análise , Carvão Vegetal/química , Água Doce/análise , Fenóis/análise , Difusão , Monitoramento Ambiental , Concentração de Íons de Hidrogênio
16.
Environ Sci Technol ; 49(24): 14267-73, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26535488

RESUMO

Hexavalent chromium (Cr(VI)) is much more toxic and mobile than the trivalent species (Cr(III)) and consequently, in situ monitoring of Cr(VI) can improve the understanding of Cr biogeochemistry and toxicity in ecosystems. The passive diffusive gradients in thin-films (DGT) technique is a powerful tool for determining metal(loid) speciation, but a binding phase that absorbs only one specific species of Cr is needed. N-Methyl-d-glucamine (NMDG) functional resin was incorporated into the DGT binding phase for selective measurement of Cr(VI). This NMDG-DGT sampler exhibited a theoretically linear accumulation of Cr(VI), with negligible accumulation (<5%) of Cr(III), even after 72 h deployment. The good prediction of Cr(VI) concentration in synthetic freshwater with NMDG-DGT, even in the presence of 10-time more Cr(III), further indicated the sampler's reliability in selective detection of Cr(VI). Moreover, its high capacity for Cr(VI), which exceeded 230 µg cm(-2), facilitates measurement of Cr(VI) in both uncontaminated natural waters and in slightly and heavily contaminated (ppm level) waters. Field deployment of the NMDG-DGT sampler in such waters allowed accurate measurement of time-averaged Cr(VI) concentration, indicating its robustness for in situ measurements of Cr speciation and its potential for further application in the risk assessment of Cr.


Assuntos
Cromo/análise , Poluentes Químicos da Água/análise , China , Difusão , Água Doce/química , Géis/química , Concentração de Íons de Hidrogênio , Cinética , Meglumina/química , Metais , Concentração Osmolar , Reprodutibilidade dos Testes , Água
17.
Environ Sci Technol ; 49(6): 3653-61, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25655234

RESUMO

Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 µm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter≤0.2 µm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 µm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.


Assuntos
Ânions/análise , Precipitação Química , Sedimentos Geológicos/química , Imageamento Tridimensional , Oxigênio/análise , Poluentes Químicos da Água/análise , Água/química , Zircônio/química , Difusão , Meio Ambiente , Géis , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Espectrofotometria Atômica , Fatores de Tempo
18.
Sci Total Environ ; 946: 174265, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936739

RESUMO

Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 µg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron­manganese plaque (IP) within 20-110 µm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %-25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.

19.
Plant Physiol Biochem ; 207: 108368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237424

RESUMO

Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.


Assuntos
Metais Pesados , Oryza , Cromo/toxicidade , Antioxidantes/metabolismo , Oryza/metabolismo , Silício/farmacologia , Plantas/metabolismo , Estresse Oxidativo
20.
J Agric Food Chem ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943592

RESUMO

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA