Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4106, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750031

RESUMO

China's extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China's planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China's planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China's planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr-1. The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China's Carbon Neutrality Target for 2060.

2.
Plant Methods ; 16: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435271

RESUMO

BACKGROUND: Precision agriculture is an emerging research field that relies on monitoring and managing field variability in phenotypic traits. An important phenotypic trait is biomass, a comprehensive indicator that can reflect crop yields. However, non-destructive biomass estimation at fine levels is unknown and challenging due to the lack of accurate and high-throughput phenotypic data and algorithms. RESULTS: In this study, we evaluated the capability of terrestrial light detection and ranging (lidar) data in estimating field maize biomass at the plot, individual plant, leaf group, and individual organ (i.e., individual leaf or stem) levels. The terrestrial lidar data of 59 maize plots with more than 1000 maize plants were collected and used to calculate phenotypes through a deep learning-based pipeline, which were then used to predict maize biomass through simple regression (SR), stepwise multiple regression (SMR), artificial neural network (ANN), and random forest (RF). The results showed that terrestrial lidar data were useful for estimating maize biomass at all levels (at each level, R2 was greater than 0.80), and biomass estimation at leaf group level was the most precise (R2 = 0.97, RMSE = 2.22 g) among all four levels. All four regression techniques performed similarly at all levels. However, considering the transferability and interpretability of the model itself, SR is the suggested method for estimating maize biomass from terrestrial lidar-derived phenotypes. Moreover, height-related variables showed to be the most important and robust variables for predicting maize biomass from terrestrial lidar at all levels, and some two-dimensional variables (e.g., leaf area) and three-dimensional variables (e.g., volume) showed great potential as well. CONCLUSION: We believe that this study is a unique effort on evaluating the capability of terrestrial lidar on estimating maize biomass at difference levels, and can provide a useful resource for the selection of the phenotypes and models required to estimate maize biomass in precision agriculture practices.

3.
Sci Bull (Beijing) ; 65(13): 1125-1136, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659164

RESUMO

Vegetation maps are important sources of information for biodiversity conservation, ecological studies, vegetation management and restoration, and national strategic decision making. The current Vegetation Map of China (1:1000000) was generated by a team of more than 250 scientists in an effort that lasted over 20 years starting in the 1980s. However, the vegetation distribution of China has experienced drastic changes during the rapid development of China in the last three decades, and it urgently needs to be updated to better represent the distribution of current vegetation types. Here, we describe the process of updating the Vegetation Map of China (1:1000000) generated in the 1980s using a "crowdsourcing-change detection-classification-expert knowledge" vegetation mapping strategy. A total of 203,024 field samples were collected, and 50 taxonomists were involved in the updating process. The resulting updated map has 12 vegetation type groups, 55 vegetation types/subtypes, and 866 vegetation formation/sub-formation types. The overall accuracy and kappa coefficient of the updated map are 64.8% and 0.52 at the vegetation type group level, 61% and 0.55 at the vegetation type/subtype level and 40% and 0.38 at the vegetation formation/sub-formation level. When compared to the original map, the updated map showed that 3.3 million km2 of vegetated areas of China have changed their vegetation type group during the past three decades due to anthropogenic activities and climatic change. We expect this updated map to benefit the understanding and management of China's terrestrial ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA