Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 46(2): e2200602, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377517

RESUMO

Cordycepin from Cordyceps possesses excellent pharmacological properties, including anti-inflammation and anti-tumor effects, therefore representing a potential alternative medicine. However, doubts about the pharmacokinetic results of cordycepin had been raised in the previous study due to its rapid deamination. The organic solvent methanol was immediately added to terminate the degradation of cordycepin in anticoagulated blood samples and enable the accurate evaluation of pharmacokinetics in vivo. A sensitive and selective ultra-high-performance liquid chromatography coupled with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry method was developed and validated to simultaneously determine cordycepin and its deamination metabolite 3'-deoxyinosine using 2-chloroadenosine as an internal standard in rat whole blood. The calibration curves of cordycepin and 3'-deoxyinosine showed excellent linearity within the concentration range of 1.05-10 000.00 ng/ml with acceptable accuracy, precision, selectivity, recovery, matrix effect, and stability. This method was successfully applied to the pharmacokinetic study of cordycepin and its metabolite in rat blood. The effect of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride on the pharmacokinetics of cordycepin was investigated. In summary, the reliable pharmacokinetic parameters of cordycepin and its deamination metabolite 3'-deoxyinosine in rat blood were successfully elucidated. Erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride considerably prolonged the half-life of cordycepin in vivo.


Assuntos
Cromatografia Líquida de Alta Pressão , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5195-5204, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114109

RESUMO

The 3-succinate-30-stearyl glycyrrhetinic acid(18-GA-Suc) was inserted into glycyrrhetinic acid(GA)-tanshinone Ⅱ_A(TSN)-salvianolic acid B(Sal B) liposome(GTS-lip) to prepare liver targeting compound liposome(Suc-GTS-lip) mediated by GA receptors. Next, pharmacokinetics and tissue distribution of Suc-GTS-lip and GTS-lip were compared by UPLC, and in vivo imaging tracking of Suc-GTS-lip was conducted. The authors investigated the effect of Suc-GTS-lip on the proliferation inhibition of hepatic stellate cells(HSC) and explored their molecular mechanism of improving liver fibrosis. Pharmacokinetic results showed that the AUC_(Sal B) decreased from(636.06±27.73) µg·h·mL~(-1) to(550.39±12.34) µg·h·mL~(-1), and the AUC_(TSN) decreased from(1.08±0.72) µg·h·mL~(-1) to(0.65±0.04) µg·h·mL~(-1), but the AUC_(GA) increased from(43.64±3.10) µg·h·mL~(-1) to(96.21±3.75) µg·h·mL~(-1). The results of tissue distribution showed that the AUC_(Sal B) and C_(max) of Sal B in the liver of the Suc-GTS-lip group were 10.21 and 4.44 times those of the GTS-lip group, respectively. The liver targeting efficiency of Sal B, TSN, and GA in the Suc-GTS-lip group was 40.66%, 3.06%, and 22.08%, respectively. In vivo imaging studies showed that the modified liposomes tended to accumulate in the liver. MTT results showed that Suc-GTS-lip could significantly inhibit the proliferation of HSC, and RT-PCR results showed that the expression of MMP-1 was significantly increased in all groups, but that of TIMP-1 and TIMP-2 was significantly decreased. The mRNA expressions of collagen-I and collagen-Ⅲ were significantly decreased in all groups. The experimental results showed that Suc-GTS-lip had liver targeting, and it could inhibit the proliferation of HSC and induce their apoptosis, which provided the experimental basis for the targeted treatment of liver fibrosis by Suc-GTS-lip.


Assuntos
Ácido Glicirretínico , Lipossomos , Humanos , Células Estreladas do Fígado , Ácido Glicirretínico/farmacologia , Fígado , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Colágeno/farmacologia
3.
Anal Bioanal Chem ; 413(23): 5871-5884, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331552

RESUMO

Herbal medicines have historically been practiced in combinatorial way, which achieves therapeutic efficacy by integrative effects of multi-components. Thus, the accurate and precise measurement of multi bioactive components in matrices is inalienable to understanding the metabolism and disposition of herbal medicines. In this study, aiming to provide a strategy that improves analyte coverage, evaluation of six protocols employing sample pretreatment methods- protein precipitation (PPT), liquid-liquid extraction (LLE), sugaring-out-assisted liquid-liquid extraction (SULLE), and salting-out-assisted liquid-liquid extraction (SALLE)- was performed by LC-MS/MS using rat plasma and a mixture of alkaloid (evodiamine, rutaecarpine, dehydroevodiamine), terpenoid (limonin, rutaevin, obacunone), and flavonoid (liquiritin, isoliquiritin, liquiritigenin) standards isolated from Tetradium ruticarpum and Glycyrrhiza uralensis. These protocols were as follows: (1) PPT with methanol, (2) PPT with acetonitrile, (3) LLE with methyl tertiary-butyl ether-dichloromethane, (4) LLE with ethyl acetate-n-butanol, (5) SALLE with ammonium acetate, (6) SULLE with glucose. The results suggested that SALLE produced broader analyte coverage with satisfactory reproducibility, acceptable recovery, and low matrix interference. Then, sample preparation procedure of SALLE, chromatographic conditions, and mass spectrometric parameters were optimized, followed by method validation, showing that good sensitivity (LLOQ ≤ 1 ng mL-1), linearity (r ≥ 0.9933), precision (RSD ≤ 14.45%), accuracy (89.54~110.87%), and stability could be achieved. Next, the developed method was applied successfully to determine the pharmacokinetic behavior of the nine compounds in rat plasma after intragastric administration with an extract from Tetradium ruticarpum and Glycyrrhiza uralensis (Wuzhuyu-Gancao pair). Based on an extensive review and experiments, a sample preparation procedure that matches with LC-MS/MS technique and can get wider analyte coverage was outlined. The developed SALLE method is rapid, reliable, and suitable for bioanalysis of analytes with diverse polarity, which was expected to be a promising strategy for the pharmacokinetic studies of herbal medicines. Graphical abstract.


Assuntos
Alcaloides/sangue , Cromatografia Líquida/métodos , Evodia/química , Flavonoides/sangue , Glycyrrhiza uralensis/química , Medicina Herbária , Extração Líquido-Líquido/métodos , Extratos Vegetais/administração & dosagem , Espectrometria de Massas em Tandem/métodos , Terpenos/sangue , Administração Oral , Animais , Feminino , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Padrões de Referência
4.
Biomed Chromatogr ; 35(6): e5077, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475178

RESUMO

Stem-leaf saponins (SLSs), the total saponins from aerial part of P. notoginseng, are by-products of notoginseng, a famous traditional Chinese medicine. SLSs have been used as a health functional food in China, but its mild effects limited clinical applications in diseases. Inspired by steaming of notoginseng to enhance its pharmacological activity, a steaming protocol was developed to treat SLSs. SLSs were steamed at 100, 120, and 140°C for 1, 2, 3, and 4 h, respectively. The ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS and ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were applied to analyze the dynamic changes in chemical compositions. The anti-acetylcholinesterase activity of steamed SLS were assessed in vitro by directly determining the metabolic product of acetylcholine/choline. The components of SLSs were significantly changed by steaming. A total of 117 saponins and aglycones were characterized, and 35 of them were newly generated. The anti-acetylcholinesterase activity of steamed SLSs gradually increased with the extension of steamed time and the increase of steamed temperature and reached the maximum after 140°C for 3 h. Furthermore, ginsenosides Rk1 and Rg5, the main components of steamed SLSs, showed dose-dependent anti-acetylcholinesterase activities with half maximal inhibitory concentration (IC50 ) values of 26.88 ± 0.53 µm and 22.41 ± 1.31 µm that were only 1.8- and 1.5-fold higher than that of donepezil with IC50 values of 14.93 ± 4.17 µM, respectively.


Assuntos
Inibidores da Colinesterase , Ginsenosídeos , Panax notoginseng/química , Extratos Vegetais/química , Folhas de Planta/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Vapor
5.
Biomed Chromatogr ; 35(3): e5001, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33063881

RESUMO

Lusianthridin, a bioactive component isolated from Dendrobium venustum, has been demonstrated to have many biological properties such as antioxidant and anticancer activities. However, the metabolic profiles remain unknown. This study was carried out to investigate the metabolic profiles of lusianthridin in liver microsomes. Lusianthridin was co-incubated with liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and UDP-glucuronic acid or glutathione at 37°C for 1 h. The incubation samples were analyzed by liquid chromatography combined with electrospray ionization high-resolution mass spectrometry. The data were acquired and processed. The structures of the metabolites were proposed by comparing their accurate mass and MS2 spectra with those of the parent compound. A total of 15 metabolites were detected in vitro, including two phase I and 13 phase II metabolites. The phase I metabolic pathways were oxidation, demethylation and dehydrogenation. The phase II metabolic pathways referred to glucuronidation and glutathione conjugation. The present study provides an overview pertaining to the metabolic profiles of lusianthridin in vitro, which is indispensable for understanding the efficacy and safety of lusianthridin, as well as the herbal medicine D. venustum.


Assuntos
Cromatografia Líquida/métodos , Metaboloma/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Fenantrenos/análise , Fenantrenos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Dendrobium , Glutationa/metabolismo , NADP/metabolismo , Fenantrenos/química , Fenantrenos/farmacologia , Ratos
6.
Biomed Chromatogr ; 35(8): e5108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33650162

RESUMO

A rapid ultra-fast liquid chromatography tandem mass spectrometry method was developed and validated to determine ginsenosides Rk1 and Rg5, a pair of isomers, in rat plasma, which was successfully applied to their pharmacokinetic studies. Two ginsenosides were given to male Sprague-Dawley rats via intragastrical and intravenous routes, respectively, and the impact of double bond position on the pharmacokinetic features of the two ginsenosides was elucidated in rats. Ginsenoside Rg3 was used as internal standard and ethyl acetate was applied to extract analytes and internal standard. Chromatographic separation was carried out on a reverse-phase UPLC HSS T3 column (100 × 2.1 mm, 1.8 µm). The flow rate was set to 0.4 ml/min. The fragmentation transition was m/z 765.4 → m/z 101.1 for two ginsenosides. The mobile phases were composed of 0.1% formic acid aqueous solution and acetonitrile. The linear range was 2-1,000 ng/ml for the two ginsenosides. Intra- and inter-day precisions were <11.67%, and accuracy fluctuated from -7.44 to 6.78%. The extraction recovery, matrix effect and stability were within acceptable levels. After treatment with ginsenosides Rk1 and Rg5, some differences were found in their pharmacokinetic profiles in rats. The maximum plasma drug concentration and the area under the plasma drug concentration-time curve of ginsenoside Rg5 were about 5 times bigger than those of ginsenoside Rk1 after oral administration, and 3 times higher after intravenous administration. The oral bioavailabilities of ginsenosides Rk1 and Rg5 were 0.67 and 0.97%, respectively. The results indicated that ∆20(22) -ginsenosides showed better pharmacokinetic features than ∆20(21) -ginsenosides with the same glycosylation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos , Espectrometria de Massas em Tandem/métodos , Animais , Ginsenosídeos/sangue , Ginsenosídeos/química , Ginsenosídeos/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
7.
Biomed Chromatogr ; 34(3): e4779, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31845520

RESUMO

Cordycepin has recently received increased attention owing to its extensive pharmacological activity. Adenosine deaminase (ADA) is widely distributed in mammalian blood and tissues; as a result, cordycepin is quickly metabolized upon entering into the body and converted into the inactive metabolite 3'-deoxyinosine, thus limiting its activity when administered alone. We herein present a novel ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for screening ADA inhibitors against the metabolism of cordycepin. Cordycepin and 3'-deoxyinosine were chosen as substrate and product, respectively. A proper separation was achieved for all analytes within 3 min. 3'-Deoxyinosine was quantified in the presence or absence of potential ADA inhibitors to evaluate ADA activity. The assay can simultaneously determine substrate and product, with the endogenous substance and ADA inhibitors added not interfering in its activity. After optimizing the enzymatic incubation and UHPLC-MS/MS conditions, Km and Vmax values for ADA deamination of cordycepin were 95.18 ± 7.85 µm and 363.90 ± 12.16 µmol/min/unit, respectively. Oleanolic acid and ursolic acid from Ligustri Lucidi Fructus were chosen as ADA inhibitors with half maximal inhibitory concentration values of 21.82 ± 0.39 and 18.41 ± 0.14 µm, respectively. A non-competitive inhibition model was constructed and this assay can be used to screen other potential ADA inhibitors quickly and accurately.


Assuntos
Inibidores de Adenosina Desaminase , Cromatografia Líquida de Alta Pressão/métodos , Desoxiadenosinas , Ligustrum/química , Extratos Vegetais , Inibidores de Adenosina Desaminase/análise , Inibidores de Adenosina Desaminase/química , Inibidores de Adenosina Desaminase/isolamento & purificação , Desoxiadenosinas/análise , Desoxiadenosinas/metabolismo , Descoberta de Drogas , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Triterpenos , Ácido Ursólico
8.
Bioorg Med Chem ; 27(10): 2027-2040, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30975503

RESUMO

(R)-5-Methylmellein (5-MM), the major ingredient in the fermented mycelia of the medicinal fungus Xylaria nigripes (called Wuling Shen in Chinese)¸ was found to be a selective inhibitor against monoamine oxidase A (MAO-A) and might play an important role in the clinical usage of this edible fungus as an anti-depressive traditional Chinese medicine (TCM). Based on the discovery and hypothesis, a variety of (R)-5-MM analogs were synthesized and evaluated in vitro against two monoamine oxidase isoforms (MAO-A and MAO-B). Most synthetic analogs showed selective inhibition of MAO-A with IC50 values ranging from 0.06 to 29 µM, and compound 13aR is the most potent analog with high selectivity (IC50, MAO-A: 0.06 µM; MAO-B: >50 µM). Interestingly, the enzyme kinetics study of 13aR indicated that this ligand seemed to bind in the MAO-A active site according to so-called "tight-binding inhibition" mode. The molecular docking study of 13aR was thereafter performed in order to rationalize the obtained biological results.


Assuntos
Isocumarinas/química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/química , Ascomicetos/química , Ascomicetos/metabolismo , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Isocumarinas/metabolismo , Cinética , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
9.
J Sep Sci ; 42(8): 1550-1563, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30768757

RESUMO

Notoginsenoside Fc, a protopanaxadiol-type saponin, shows multi-pharmacological activities. Chemical stability evaluation plays a crucial role in drug development. In this study, the forced degradation behavior of Notoginsenoside Fc was investigated under hydrolytic and oxidative conditions. A specific ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the separation, identification, and characterization of the degradation products of Notoginsenoside Fc. Fifty potential degradation products were formed via deglycosylation, dehydration, hydration, isomerization, side-chain cleaving, oxidation, and superoxidation. Notoginsenoside Fc was subjected to different pH solutions, temperatures, and time periods to assess its stability. A sensitive ultra high performance liquid chromatography-tandem mass spectrometry was developed for the quantification of Notoginsenoside Fc, notoginsenoside ST-4, notoginsenoside Ft1, and relative quantification of notoginsenoside Ft2, 20(R)-notoginsenoside Ft2, notoginsenoside SFt3, and notoginsenoside SFt4. The assay was linear over the concentration range (R2  > 0.997) with the lowest limit of quantification of 0.02 µg/mL for Notoginsenoside Fc, Notoginsenoside ST-4, and Notoginsenoside Ft1. The intra-day precision, inter-day precision, and accuracy of the three analytes were within accepted levels. The degradation kinetics of Notoginsenoside Fc in pH 1 and 3 solutions fits to first- and second-order kinetics, respectively. The degradation of Notoginsenoside Fc is pH-, temperature-, and time-dependent.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/química , Espectrometria de Massas em Tandem/métodos , Estabilidade de Medicamentos , Hidrólise , Isomerismo , Cinética , Oxirredução
10.
Biomed Chromatogr ; 33(11): e4670, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31368122

RESUMO

Notoginsenoside R1 (NGR1 ), a diagnostic protopanaxatriol-type (ppt-type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti-inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1 . A simple and sensitive ultra-fast liquid chromatographic-tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose-independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25-0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)-notoginsenoside R2 /20(S)-notoginsenoside R2 and 20(R)-ginsenoside Rh1 /20(S)-ginsenoside Rh1 , with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)-notoginsenoside R2 , ginsenoside Rg1 , ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/sangue , Ginsenosídeos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Intravenosa , Administração Oral , Animais , Ginsenosídeos/administração & dosagem , Ginsenosídeos/química , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Cell Physiol Biochem ; 50(4): 1286-1300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355926

RESUMO

BACKGROUND/AIMS: Natural killer (NK) cells are among the first immune cells that respond to an ischemic insult in human brains. The infiltrated NK cells damage blood-brain barrier (BBB) and exacerbate brain infarction. Buyang Huanwu Decoction (BHD), a classic Chinese traditional herbal prescription, has long been used for the treatment of ischemic stroke. The present study investigated whether BHD can prevent brain infiltration of NK cells, attenuate BBB disruption and improve ischemic outcomes. METHODS: Transient focal cerebral ischemia was induced in rats by a 60-minute middle cerebral artery occlusion, and BHD was orally administrated at the onset of reperfusion, 12 hours later, then twice daily. Assessed parameters on Day 3 after ischemia were: neurological and motor functional deficits through neurological deficit score and rotarod test, respectively; brain infarction through TTC staining; BBB integrity through Evans blue extravasation; matrix metalloproteinase-2/9 activities through gelatin zymography; tight junction protein, nuclear factor-kB (NF-kB) p65 and phospho-p65 levels through Western blotting; NK cell brain infiltration and CXCR3 levels on NK cells through flow cytometry; interferon-γ production through ELISA; CXCL10 mRNA levels through real-time PCR; CXCL10 expression and p65 nuclear translocation through immunofluorescence staining. RESULTS: BHD markedly reduced brain infarction, improved rotarod performance, and attenuated BBB breakdown. Concurrently, BHD attenuated the upregulation of matrix metalloproteinase-2/9 activities and the degradation of tight junction proteins in the ischemic brain. Infiltration of NK cells was observed in the ischemic hemisphere, and this infiltration was blunted by treatment with BHD. BHD suppressed brain ischemia-induced interferon-γ and chemokine CXCL10 production. Furthermore, BHD significantly reduced the expression of CXCR3 on brain-infiltrated NK cells. Strikingly, BHD did not affect NK cell levels or its CXCR3 expression in the spleen or peripheral blood after brain ischemia. The nuclear translocation of NF-kB p65 and phospho-p65 in the ischemic brain was inhibited by BHD. CONCLUSION: Our findings suggest that BHD prevents brain infiltration of NK cells, preserves BBB integrity and eventually improves ischemic outcomes. The inhibitory effects of BHD on NK cell brain invasion may involve its ability of suppressing NF-kB-associated CXCL10-CXCR3-mediated chemotaxis. Notably, BHD only suppresses NK cells and their CXCR3 expression in the ischemic brain, but not those in periphery.


Assuntos
Isquemia Encefálica/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Células Matadoras Naturais/imunologia , Fármacos Neuroprotetores/uso terapêutico , Administração Oral , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/veterinária , Quimiocina CXCL10/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Infarto da Artéria Cerebral Média/complicações , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores CXCR3/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Phytomedicine ; 126: 155444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367423

RESUMO

BACKGROUND: Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE: This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS: The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS: Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-ß1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION: This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.


Assuntos
Alcaloides de Berberina , Alcaloides de Berberina/farmacologia , Alcaloides de Berberina/farmacocinética , Humanos , Animais , Neoplasias Gástricas/tratamento farmacológico , Gastrite Atrófica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
13.
Int J Biol Macromol ; 277(Pt 4): 134537, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111463

RESUMO

As one of rare high-value ocotillol (OCT)-type ginsenosides, pseudoginsenoside Rt5 has been identified with significant pharmacological activities. UDP-glycosyltransferases (UGTs) play pivotal roles in catalyzing the transfer of a glycosyl moiety from a donor to an acceptor. In this study, the novel UGT, PjUGT10, was screened from the transcriptome database of Panax japonicus and identified with the enzymatic activity of transferring a glucosyl group on OCT to produce Rt5. The catalytic efficiency of PjUGT10 was further enhanced by employing site-directed mutation. Notably, the variant M7 exhibited a remarkable 6.16 × 103-fold increase in kcat/Km towards 20S,24R-ocotillol and a significant 2.02 × 103-fold increase to UDP-glucose, respectively. Moreover, molecular dynamics simulations illustrated a reduced distance between 20S,24R-ocotillol and the catalytic residue His15 or UDP-glucose, favoring conformation interactions between the enzyme and substrates. Subsequently, Rt5 was synthesized in an engineered Escherichia coli strain M7 coupled with a UDP-glucose synthetic system. This study not only shed light on the protein engineering that can enhance the catalytic activity of PjUGT10, but also established a whole-cell approach for the production of Rt5.

14.
J Pharm Biomed Anal ; 249: 116340, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986349

RESUMO

Zuojin Pill (ZJP), a traditional Chinese medicine prescription composed of Rhizoma Coptidis and Euodiae Fructus in the ratio of 6:1 (w/w), has been widely used for the treatment of gastric disorders. However, an in-depth understanding of in vivo metabolism and distribution profiles of protoberberine alkaloids (PBAs) and indole alkaloids (IDAs) in ZJP is lacking. In this study, a method using ultra-high performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was developed to systematically screen the alkaloids and their metabolites in rat plasma and various tissues after oral administration of ZJP. Furthermore, bioinformatics and molecular docking analyses were conducted to elucidate the contribution of the alkaloids and metabolites enriched in the stomach to the therapeutic effect of ZJP on gastritis. A total of 33 compounds, including 7 prototype alkaloids and 26 metabolites, were chemically defined or tentatively identified in this work. The metabolic pathways of PBAs (hydroxylation, oxidation, reduction, demethylation, demethylenation, glucuronide conjugation, sulfate conjugation) and IDAs (hydroxylation, glucuronide conjugation) were revealed. Notably, 7 prototype alkaloids and 18 metabolites were detected in the stomach, indicating their propensity for gastric distribution. These alkaloids and metabolites showed strong affinities with the 7 hub targets associated with gastritis, such as CCR7, CXCR4, IL6, IFNG, CCL2, TNF, and PTPRC, and could be considered the potential active substances of ZJP for treating gastritis. In conclusion, this study clarified the gastric distribution propensity of PBAs and IDAs and their metabolites, as well as their favorable binding interactions with gastritis-related targets, which could provide essential data for the further study of the pharmacodynamic material basis and gastroprotective mechanism of ZJP.

15.
Food Res Int ; 180: 114068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395544

RESUMO

Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.


Assuntos
Antioxidantes , Ácido Gálico , Antioxidantes/farmacologia , Ácido Gálico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Disponibilidade Biológica , Sistemas de Liberação de Fármacos por Nanopartículas , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Proteínas de Membrana Transportadoras/metabolismo , Indústria Alimentícia
16.
Biomaterials ; 305: 122466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184960

RESUMO

Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.


Assuntos
Benzopiranos , Cério , Nanopartículas Metálicas , Nanopartículas , Sepse , Camundongos , Animais , Fosforilação , Quinase I-kappa B/metabolismo , Quinase I-kappa B/uso terapêutico , Inflamação/tratamento farmacológico , Nanopartículas/química , Nanopartículas Metálicas/uso terapêutico , Cério/química
17.
Front Pharmacol ; 14: 1113583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124205

RESUMO

Sinapis Semen (SS), the dried mature seed of Sinapis alba L. and Brassica juncea (L.) Czern. et Coss., is one of the traditional Chinese medicinal materials with a wide range of pharmacological effects being used for asthma, cough and many other ailments. SS is also widely used in food agriculture, medicine and other industries in North America and South Asia. More recently, the research on SS has gradually intensified and increased. However, there is no systematic review of SS. In this review, through literature exploration and analysis, the research advance on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics of SS was aggregated initially. Total 144 compounds have been isolated and identified from SS. Among them, glucosinolates and their hydrolysates and volatile oils are the main active ingredients and important chemical classification markers. SS has a wide range of pharmacological effects, especially in cough suppressing, asthma calming, anti-inflammatory, neuroprotective, cardiovascular protective, inhibiting androgenic effects, anti-tumor, and skin permeation promoting effects. Sinapine and sinapic acid are the main active ingredients of SS for its medicinal effects. However, SS has a strong skin irritation, presumably related to the time of application, the method of processing, and original medicinal plants. This review will provide useful data for the follow-up research and safe and reasonable clinical application of SS.

18.
Heliyon ; 9(11): e22016, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027676

RESUMO

Atorvastatin (Atv) is widely used to lower cholesterol levels and treat hyperlipidemia in clinical application. Nomilin (Nom) is a kind of limonoids, which is found and isolated from the citrus herbs of Rutaceae family, which are widely used as patent medicines, functional foods, and nutritional supplements in many countries. In previous studies, Nom has the effect of anti-obesity and curing other metabolic diseases. Nevertheless, in recent years, the drug-drug interaction (DDI) caused by the administration of drugs with synergistic effects have raised worldwide concerns. To investigate the DDI of Nom and Atv in vivo, the pharmacokinetic studies were performed with using C57BL/6 mice. The plasma concentrations of Nom and Atv were measured after oral administration of different drug combinations by a simple and sensitive UHPLC-MS/MS method. The experimental mice were randomly divided into five groups, including control group, model group, administered Nom individually group, administered Atv individually group and co-administered of Nom and Atv group. The lipid levels including total cholesterol (TC), triglycerides (TG), high density lipoproteins-cholesterol (HDL-C), low density lipoproteins-cholesterol (LDL-C) were measured for pharmacodynamic study. The hepatic microsomal Cytochrome P450 (CYP1A2, CYP2E1 and CYP3A11) activities were probed using cocktail assay. The gene and protein expressions of CYP3A11 were detected via qPCR and Western blot method. The results shown that the area under the plasma concentration-time curve (AUC) of Atv in administered Atv individually group was 69.30 ± 15.45 ng/mL × h, while that of combined Nom with Atv group was 42.37 ± 10.15 ng/mL × h (p<0.05). The degree of reduction in lipid levels of mice treated with co-administration of Atv and Nom was less than that of mice treated with Atv alone. In addition, Nom could cause an increased hepatic microsomal CYP3A11 activity significantly, and induce the gene levels and protein expressions of CYP3A11 elevated in mice livers. In conclusion, Nom could up-regulate CYP3A11 activity, thereby impacting on the pharmacokinetic profile and pharmacodynamic effect of Atv. The findings provide more insight for the use risk of these two drugs to treat hyperlipidemia diseases.

19.
J Pharm Biomed Anal ; 223: 115140, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36356406

RESUMO

Polyacetylenes, lobetyol, lobetyolin and lobetyolinin, are responsible for antitumor, antioxidant, anti-inflammatory, immunomodulatory activities of Codonopsis Radix. However, their metabolic pathways are still unknown. The study was purposed to investigate the metabolism of three polyacetylenes in vitro and in vivo by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Moreover, a rapid, sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantitative and semi-quantitative determination of lobetyol and its 12 metabolites to investigate the metabolic stability and metabolic phenotypes. A total of 47, 30 and 34 metabolites of lobetyol, lobetyolin and lobetyolinin were found in all samples. These metabolites are produced through extensive pathways, mainly involving oxidation, glucuronidation and glutathione conjugation. Lobetyol showed good metabolic stability in liver microsomes. The results of both recombinant human CYP enzymes and chemical inhibition experiments confirmed that CYP2C19, 1A1, 2C9, and 1A2 are the major isozymes mediating lobetyol metabolism.


Assuntos
Codonopsis , Humanos , Codonopsis/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polímero Poliacetilênico , Redes e Vias Metabólicas
20.
Nat Commun ; 14(1): 3368, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291126

RESUMO

Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Masculino , Humanos , Animais , Camundongos , Longevidade/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Receptor de Pregnano X , Fatores de Transcrição Forkhead , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA