Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38797889

RESUMO

Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.


Assuntos
RNA Circular , Bovinos , RNA Circular/genética , Animais , RNA Ribossômico/genética , Análise de Sequência de RNA/métodos , Fígado/metabolismo , Rúmen/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos
2.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825126

RESUMO

This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.

3.
Genomics ; 115(5): 110680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454938

RESUMO

This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.


Assuntos
Colo , Mucosa Intestinal , Animais , Bovinos , Masculino , Desmame , Colo/metabolismo , Perfilação da Expressão Gênica , Imunidade
4.
Genomics ; 115(5): 110664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286013

RESUMO

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Rúmen/metabolismo , Desmame , Epitélio/metabolismo , Ácidos Graxos Voláteis/metabolismo , Perfilação da Expressão Gênica
5.
Appl Environ Microbiol ; 89(12): e0132023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054735

RESUMO

IMPORTANCE: Ruminants play a key role in the conversion of cellulolytic plant material into high-quality meat and milk protein for humans. The rumen microbiome is the driver of this conversion, yet there is little information on how gene expression within the microbiome impacts the efficiency of this conversion process. The current study investigates gene expression in the rumen microbiome of beef heifers and bison and how transplantation of ruminal contents from bison to heifers alters gene expression. Understanding interactions between the host and the rumen microbiome is the key to developing informed approaches to rumen programming that will enhance production efficiency in ruminants.


Assuntos
Bison , Microbiota , Humanos , Animais , Bovinos , Feminino , Ração Animal/análise , Rúmen/metabolismo , Ruminantes , Dieta/veterinária , Fermentação
6.
Genomics ; 113(3): 1522-1533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774166

RESUMO

BACKGROUND: The enriched nitrogenous compounds in the dairy farms negatively affect the surrounding soil quality and air condition. The objective of this study is to investigate the transcriptomes of five key tissues involved in nitrogen metabolism and their changes under different diets to elucidate the molecular regulatory mechanisms of urine urea nitrogen (UUN) yield, one of the indicators of nitrogenous compound secretion of dairy cows. RESULTS: Cows fed high quality forage-based diet had lower UUN content and UUN yield, compared to those fed low quality forage (crop byproducts) based diets. From the transcriptomes of rumen, duodenum, jejunum, liver and udder, key driver genes and their UUN yield-associated functional gene networks were identified. In addition, the functional networks and expression of key drivers in various tissues (such as S100A8, CA1 and BPIFA2C in the duodenum; A2ML1, HMGCS2 and S100A12 in the jejunum; CYP2B6 and GLYCAM1 in the liver; APOE in the udder) changed in the cows fed crop byproducts based diet, which might be the predominant molecules to drive the increase UUN yield in these cows. CONCLUSION: The information suggested that gut, liver and udder play important roles in regulating UUN yield, which could regulate nitrogen excretion waste. These findings provide fundamental information on future nutritional intervention strategies to reduce the UUN yield from dairy cows fed human inedible crop byproducts, which is vital for a sustainable and environmentally friendly dairy industry.


Assuntos
Lactação , Ureia , Animais , Bovinos , Feminino , Leite/metabolismo , Nitratos/metabolismo , Rúmen/metabolismo , Ureia/metabolismo
7.
Genomics ; 113(6): 4116-4125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34743958

RESUMO

Our objective was to evaluate the effect of colostrum feeding times on genome-wide gene expression of neonatal calves. In total, twenty-seven calves were assigned to three colostrum feeding treatments: within 45 min (TRT0h, n = 9), 6 h (TRT6h, n = 9) and 12 h (TRT12h, n = 9). Ileum tissues were collected at 51 h and transcriptomic analysis was conducted. Uniquely expressed genes were identified in TRT0h group with enriched "Antigen Presentation" function. Meanwhile, the weighted gene co-expression network analysis (WGCNA) identified four significant gene modules (|correlation| > 0.50 and P ≤ 0.05). In particular, Turquoise gene module with the enriched "Cadherin binding involved in cell-cell adhesion" and "Cell-cell adherences junction" GO terms were significantly correlated with Faecalibacterium prausnitzii (R = -0.70, P < 0.01) and Bifidobacterium (R = -0.55, P < 0.01). Our findings suggest feeding colostrum without delay could stimulate the expression of genes involved in immune function development related to host response and microbial colonization in neonatal claves.


Assuntos
Colostro , Íleo , Animais , Animais Recém-Nascidos , Bovinos , Colostro/metabolismo , Feminino , Perfilação da Expressão Gênica , Sistema Imunitário , Gravidez
8.
Bioinformatics ; 36(8): 2530-2537, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31873721

RESUMO

MOTIVATION: Enhancing the utilization of human-inedible crop by-products by ruminants to produce high-quality milk for human consumption is an emerging global task. We performed a multi-omics-based study to decipher the regulatory biological processes of milk production when cows fed low-quality crop by-products with the aim to improve their utilization. RESULTS: Seven types of different high-throughput omics data were generated across three central organs [rumen, liver and mammary gland (MG)] and biofluids (rumen fluid and blood) that involved in milk production. The integrated multi-omics analysis including metabolomics, metagenomics and transcriptomics showed altered microbiome at compositional and functional levels, microbial metabolites in the rumen, down-regulated genes and associated functions in liver and MG. These changes simultaneously contributed to down-regulated three key metabolic nodes (propionate, glucose and amino acid) across these organs and biofluids that led to lowered milk yield and quality when cows consumed corn stover (CS). Hippuric acid was identified as a biomarker that led to low milk production in CS-fed cows, suggesting a future evaluation parameter related to the metabolic mechanism of low-quality forage utilization. This study unveils the milk production-related biological mechanism across different biofluids and tissues under a low-quality forage diet, which provides a novel understanding and potential improvement strategies for future crop by-products utilization and sustainable ruminant production. AVAILABILITY AND IMPLEMENTATION: The raw files of metagenomics, metabolomics, and transcriptomics data can be accessed at NCBI SRA (No. SRR5028206), EMBI-EBI (No. MTBLS411), and GEO (NO. GSE78524) databases respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Lactação , Leite , Animais , Bovinos , Dieta , Feminino , Genômica , Rúmen , Zea mays
9.
RNA Biol ; 18(6): 854-862, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32931715

RESUMO

Increasing the healthy/unhealthy fatty acid (FA) ratio in meat is one of the urgent tasks required to address consumer concerns. However, the regulatory mechanisms ultimately resulting in FA profiles vary among animals and remain largely unknown. In this study, using ~1.2 Tb high-quality RNA-Seq-based transcriptomic data of 188 samples from four key metabolic tissues (rumen, liver, muscle, and backfat) together with the contents of 49 FAs in backfat, the molecular regulatory mechanisms of these tissues contributing to FA formation in cattle were explored. Using this large dataset, the alternative splicing (AS) events, one of the transcriptional regulatory mechanisms in four tissues were identified. The highly conserved and absent AS events were detected in rumen tissue, which may contribute to its functional differences compared with the other three tissues. In addition, the healthy/unhealthy FA ratio related AS events, differential expressed (DE) genes, co-expressed genes, and their functions in four tissues were analysed. Eight key genes were identified from the integrated analysis of DE, co-expressed, and AS genes between animals with high and low healthy/unhealthy FA ratios. This study provides an applicable pipeline for AS events based on comprehensive RNA-Seq analysis and improves our understanding of the regulatory mechanism of FAs in beef cattle.


Assuntos
Processamento Alternativo , Bovinos/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Transdução de Sinais/genética , Animais , Bovinos/metabolismo , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Fígado/metabolismo , Masculino , Músculos/metabolismo , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Rúmen/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Dairy Sci ; 104(2): 2290-2301, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358167

RESUMO

Branched-chain fatty acids (BCFA) have recently been reported to play a role in human gut health during early life. However, little information is available on the fecal BCFA profiles in young ruminants and whether they are associated with the development of neonatal calf diarrhea. The objectives of this study were to (1) characterize BCFA profiles in feces collected from young calves, (2) compare the fecal BCFA composition between diarrheic and nondiarrheic dairy calves, and (3) explore the potential relationships between BCFA and microbiota in the feces. A total of 32 male Holstein dairy calves (13 ± 3 d old) with the same diet management were grouped as diarrheic (n = 16) or healthy (n = 16) based on fecal score (determined by liquid fecal consistency with some solid particles); diarrhea cases were defined as fecal score ≥2 for at least 2 d. Fecal samples were collected on the seventh day after calf arrival, and the fecal BCFA and microbial profiles were assessed using gas chromatograph and amplicon sequencing, respectively. In total, 7 BCFA were detected in the feces of all dairy calves; however, the concentrations of fecal BCFA differed between diarrheic and nondiarrheic calves. Specifically, the concentrations of iso-C16:0, iso-C17:0, anteiso-C17:0, and total even-chain BCFA were significantly higher in the feces of diarrheic calves. When the associations between BCFA and bacteria were studied, the relative abundance of Eggerthella was positively correlated with the concentrations of iso-C16:0 (ρ = 0.67), iso-17:0 (ρ = 0.77), anteiso-C17:0 (ρ = 0.73), and iso-C18:0 (ρ = 0.65), whereas the relative abundance of Subdoligranulum was positively correlated with the concentrations of iso-C14:0 (ρ = 0.62), iso-C15:0 (ρ = 0.78), and anteiso-C15:0 (ρ = 0.63). Use of random forest algorithm showed that BCFA such as anteiso-C15:0, iso-C16:0, iso-C17:0, iso-C18:0, and total even-chain BCFA could be used as biomarkers to differentiate diarrheic calves from healthy ones. Our findings generated fundamental knowledge on the potential roles of BCFA in neonatal calf gut health. Follow-up studies with larger animal populations are warranted to validate the feasibility of using BCFA as indicators of health status in neonatal calves.


Assuntos
Doenças dos Bovinos/metabolismo , Diarreia/veterinária , Ácidos Graxos/análise , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Animais Recém-Nascidos , Bovinos , Doenças dos Bovinos/microbiologia , Diarreia/microbiologia , Feminino , Nível de Saúde
11.
Genomics ; 112(6): 3968-3977, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650099

RESUMO

Bovine respiratory disease (BRD) is the most common disease in beef cattle and leads to considerable economic losses in both beef and dairy cattle. It is important to uncover the molecular mechanisms underlying BRD and to identify biomarkers for early identification of BRD cattle in order to address its impact on production and welfare. In this study, a longitudinal transcriptomic analysis was conducted using blood samples collected from 24 beef cattle at three production stages in the feedlot: 1) arrival (Entry group); 2) when identified as sick (diagnosed as BRD) and separated for treatment (Pulled); 3) prior to marketing (Close-out, representing healthy animals). Expressed genes were significantly different in the same animal among Entry, Pulled and Close-out stages (false discovery rate (FDR) < 0.01 & |Fold Change| > 2). Beef steers at both Entry and Pulled stages presented obvious difference in GO terms (FDR < 0.05) and affected biological functions (FDR < 0.05 & |Z-score| > 2) when compared with animals at Close-out. However, no significant functional difference was observed between Entry and Pulled animals. The interferon signaling pathway showed the most significant difference between animals at Entry/Pulled and Close-out stages (P < .001 & |Z-score| > 2), suggesting the animals initiated antiviral responses at an early stage of infection. Six key genes including IFI6, IFIT3, ISG15, MX1, and OAS2 were identified as biomarkers to predict and recognize sick cattle at Entry. A gene module with 169 co-expressed genes obtained from WGCNA analysis was most positively correlated (R = 0.59, P = 6E-08) with sickness, which was regulated by 11 transcription factors. Our findings provide an initial understanding of the BRD infection process in the field and suggests a subset of novel marker genes for identifying BRD in cattle at an early stage of infection.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Perfilação da Expressão Gênica , Doenças Respiratórias/veterinária , Animais , Estudos Longitudinais , Doenças Respiratórias/genética
12.
Bioinformatics ; 35(10): 1712-1719, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30329014

RESUMO

MOTIVATION: Feed efficiency is an important trait for sustainable beef production that is regulated by the complex biological process, but the mode of action behinds it has not been clearly defined. Here, we aimed to elucidate the regulatory mechanisms of this trait through studying the landscape of the genome-wide gene expression of rumen, liver, muscle and backfat tissues, the key ones involved in the energy metabolism. RESULTS: The transcriptome of 189 samples across four tissues from 48 beef steers with varied feed efficiency were generated using Illumina HiSeq4000. The analysis of global gene expression profiles of four tissues, functional analysis of tissue-shared and -unique genes, co-expressed network construction of tissue-shared genes, weighted correlations analysis between gene modules and feed efficiency-related traits in each tissue were performed. Among four tissues, the transcriptome of muscle tissue was distinctive from others, while those of rumen and backfat tissues were similar. The associations between co-expressed genes and feed efficiency related traits at single or all tissues level exhibited that the gene expression in the rumen, liver, muscle and backfat were the most correlated with feed conversion ratio, dry matter intake, average daily gain and residual feed intake, respectively. The 19 overlapped genes identified from the strongest module-trait relationships in four tissues are potential generic gene markers for feed efficiency. AVAILABILITY AND IMPLEMENTATION: The distribution of gene expression data can be accessed at https://www.cattleomics.com/transcriptome. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ração Animal , Carne Vermelha , Animais , Bovinos , Redes Reguladoras de Genes , Fenótipo , Transcriptoma
13.
J Dairy Sci ; 103(12): 11483-11489, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33041035

RESUMO

Although odd-chain fatty acids (OCFA) and branched-chain fatty acids (BCFA) are found in bovine milk and have some positive influences on human and animal health, their concentrations in bovine colostrum and transition milk have not been reported. In this study, we reported the OCFA and BCFA concentrations in colostrum and transition milk and their stability after heating or freezing treatments (or both), which are processes commonly applied in dairy calf management. Milk samples were collected from 12 Holstein dairy cows (6 primiparous and 6 multiparous) at the first milking (colostrum), fifth milking (transition milk), and ninth milking (mature milk) after calving, respectively, and were used for fatty acid analysis using gas chromatography. The sum concentration of OCFA and BCFA (termed OBCFA) was 134 mg/100 g of milk in the colostrum, which was 24% and 35% lower than that in the transition milk and mature milk, respectively. Among these fatty acids detected, C15:0 and C17:0 were the top 2 abundant fatty acids in all milk types, accounting for 20 to 25% and 21 to 24% of the total concentration of OBCFA, respectively. Additionally, anteiso-C17:0 was the most abundant BCFA, followed by iso-C17:0, anteiso-C15:0, iso-C16:0, iso-C15:0, iso-C18:0, and iso-C14:0 in 3 types of milk. Significant interactions between milk type and cow parity were observed for all OCFA and BCFA concentrations. The milk samples were also treated with heating (at 65°C for 60 min), freezing (at -20°C for 30 d), and heating and freezing (at 65°C for 60 min and then at -20°C for 30 d), and milk OCFA and BCFA concentrations were similar between these treatments. In conclusion, the OBCFA concentration was lower in colostrum, compared with transition and mature milks, and it remained stable after heating and freezing treatments.


Assuntos
Bovinos , Colostro/química , Ácidos Graxos/química , Congelamento , Calefação , Leite/química , Animais , Dieta/veterinária , Ácidos Graxos/análise , Feminino , Lactação , Paridade , Gravidez
14.
J Dairy Sci ; 103(9): 8629-8642, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622610

RESUMO

Colostrum feeding is vital for the development of the immune system and gastrointestinal tract in neonatal calves; however, it is currently unknown whether different colostrum feeding strategies affect their neuroendocrine system and potentially the gut-brain axis. The present study investigated the effect of 3 different colostrum feeding regimens on the expression of neuroendocrine genes in adrenal glands and gastrointestinal tissues and on the abundance of intestinal commensal bacteria. Holstein bull calves were fed colostrum immediately after birth and randomly assigned to 3 groups: whole milk (n = 8), mixture of 50% colostrum and 50% whole milk (n = 8), and colostrum (CF; n = 8) for 72 h with 12-h intervals. Adrenal glands, ileum, and colon tissues were collected at 75 h and were subjected to the expression of 11 targeted neuroendocrine genes and the abundance of tissue mucosa-associated bacteria measurement using quantitative real-time PCR and quantitative PCR, respectively. The expressions of all targeted genes were detected, and the expression of α-adrenergic receptor (ADRA1A) gene was affected by CF in adrenal glands and gut tissues. In addition, CF upregulated the expression of HTR4 (serotonin receptor) and SLC4A4 (serotonin transporter) genes in the ileum and increased the abundance of active Lactobacillus spp. and Escherichia coli (as detected at RNA level) associated with ileum and colon tissue. Furthermore, there were positive correlations between the abundance of active Lactobacillus spp. and E. coli with expression of HTR2B and HTR4 genes in the colon, suggesting that extended colostrum feeding strategies may affect the interaction between gut microbiota and host endocrine functions in neonatal calves.


Assuntos
Ração Animal/análise , Bovinos , Colostro , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Bactérias/efeitos dos fármacos , Líquidos Corporais , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Leite/metabolismo
15.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658973

RESUMO

A lack of information on the intestinal microbiome of neonatal calves prevents the use of microbial intervention strategies to improve calf gut health. This study profiled the taxonomic and functional composition of the small intestinal luminal microbiome of neonatal calves using whole-genome sequencing of the metagenome, aiming to understand the dynamics of microbial establishment during early life. Despite highly individualized microbial communities, we identified two distinct taxonomy-based clusters from the collective luminal microbiomes comprising a high level of either Lactobacillus or Bacteroides Among the clustered microbiomes, Lactobacillus-dominant ileal microbiomes had significantly lower abundances of Bacteroides, Prevotella, Roseburia, Ruminococcus, and Veillonella compared to the Bacteroides-dominated ileal microbiomes. In addition, the upregulated ileal genes of the Lactobacillus-dominant calves were related to leukocyte and lymphocyte chemotaxis, the cytokine/chemokine-mediated signaling pathway, and inflammatory responses, while the upregulated ileal genes of the Bacteroides-dominant calves were related to cell adhesion, response to stimulus, cell communication and regulation of mitogen-activated protein kinase cascades. The functional profiles of the luminal microbiomes also revealed two distinct clusters consisting of functions related to either high protein metabolism or sulfur metabolism. A lower abundance of Bifidobacterium and a higher abundance of sulfur-reducing bacteria (SRB) were observed in the sulfur metabolism-dominant cluster (0.2% ± 0.1%) compared to the protein metabolism-dominant cluster (12.6% ± 5.7%), suggesting an antagonistic relationship between SRB and Bifidobacterium, which both compete for cysteine. These distinct taxonomic and functional clusters may provide a framework to further analyze interactions between the intestinal microbiome and the immune function and health of neonatal calves.IMPORTANCE Dietary interventions to manipulate neonatal gut microbiota have been proposed to generate long-term impacts on hosts. Currently, our understanding of the early gut microbiome of neonatal calves is limited to 16S rRNA gene amplicon based microbial profiling, which is a barrier to developing dietary interventions to improve calf gut health. The use of a metagenome sequencing-based approach in the present study revealed high individual animal variation in taxonomic and functional abundance of intestinal microbiome and potential impacts of early microbiome on mucosal immune responses during the preweaning period. During this developmental period, age- and diet-related changes in microbial diversity, richness, density, and the abundance of taxa and functions were observed. A correlation-based approach to further explore the individual animal variation revealed potential enterotypes that can be linked to calf gut health, which may pave the way to developing strategies to manipulate the microbiome and improve calf health.


Assuntos
Animais Recém-Nascidos/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Animais , Bactérias/genética , Bovinos , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Masculino , Metagenoma , Filogenia , RNA Ribossômico 16S/genética
16.
BMC Genomics ; 19(1): 635, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30153793

RESUMO

BACKGROUND: Delivery of colostrum within the first several hours after birth is vital for establishing successful passive immunity in neonatal dairy calves. However, it is unclear whether a difference in colostrum feeding strategy can affect the development of the calf gastrointestinal tract. The aim of this study was to evaluate the effect of colostrum feeding time within the first 12 h after birth on the colonic mucosal immune system in neonatal calves using a genome wide transcriptome analysis. RESULTS: RNA sequencing-based transcriptome analysis of colon tissues collected from 27 male Holstein calves which were randomly assigned to one of three colostrum feeding strategies - (immediately after birth (TRT0); 6 h after birth (TRT6); 12 h after birth (TRT12)) - and euthanized at 51 h of age detected 15,935 ± 210, 15,332 ± 415, and 15,539 ± 440 expressed genes in the colon under three treatments, respectively. The core transcriptome of the colon included 12,678 genes, with enriched "cellular process" and "metabolic process" as the top two biological functions with 802 of them being immune function related genes. Principal component analysis of the colon transcriptomes did not display a clear separation by colostrum feeding strategy and differential abundance analyses showed no significant difference in the expression of immune related genes among the treatments. Additionally, a weighted gene co-expression network analysis identified 4 significant (|correlation| > 0.50 and p ≤ 0.05) gene modules consisting of 122 immune related genes, which were positively or negatively correlated with the abundance of Lactobacillus and Faecalibacterium prausnitzii in the colon. CONCLUSION: Transcriptome analysis indicates that the development of the colonic mucosal immune system in neonatal calves may be independent of the timing of initial colostrum meal within 12 h after birth. Our results also provide a molecular understanding of colonic biological function in neonatal calves and extends knowledge on how host gene expression profiles are associated with the abundance of specific bacterial groups in the colon.


Assuntos
Colo/imunologia , Colo/metabolismo , Colostro/metabolismo , Perfilação da Expressão Gênica , Genômica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Animais , Animais Recém-Nascidos , Bovinos , Indústria de Laticínios , Masculino , Fatores de Tempo
17.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054362

RESUMO

Currently, knowledge on the extent to which rumen microbiota differ in a large population of cattle fed the same diet and whether such differences are associated with animal performance is limited. This study was conducted to characterize the rumen microbiota of a large cohort of lactating Holstein dairy cows (n = 334) that were fed the same diet and raised under the same environment, aiming to uncover linkages between core and pan rumen microbiomes and host phenotypes. Amplicon sequencing of the partial 16S rRNA gene identified 391 bacterial genera in the pan bacteriome and 33 genera in the core bacteriome. Interanimal variation existed in the pan and core bacteriomes, with the effect of lactation stage being more prominent than that of parity (the number of pregnancies, ranging from 2 to 7) and sire. Spearman's correlation network analysis revealed significant correlations among bacteria, rumen short-chain fatty acids, and lactation performance, with the core and noncore genera accounting for 53.9 and 46.2% of the network, respectively. These results suggest that the pan rumen bacteriome together with the core bacteriome potentially contributes to variations in milk production traits. Our findings provide an understanding of the potential functions of noncore rumen microbes, suggesting the possibility of enhancing bacterial fermentation using strategies to manipulate the core and noncore bacteriomes for improved cattle performance.IMPORTANCE This study revealed the rumen bacteriome from a large dairy cattle cohort (n = 334) raised under the same management and showed the linkages among the rumen core and pan bacteriomes, rumen short-chain fatty acids, and milk production phenotypes. The findings from this study suggest that the pan rumen bacteriome, together with the core bacteriome, potentially contributes to variations in host milk production traits. Fundamental knowledge on the rumen core and pan microbiomes and their roles in contributing to lactation performance provides novel insights into future strategies for manipulating rumen microbiota to enhance milk production in dairy cattle.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bovinos , Estudos de Coortes , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Fenótipo
18.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079612

RESUMO

Cattle are the primary carrier of Escherichia coli O157:H7, a foodborne human pathogen, and those shedding >104 CFU/gram of feces of E. coli O157:H7 are defined as supershedders (SS). This study investigated the rectoanal junction (RAJ) mucosa-associated microbiota and its relationship with host gene expression in SS and in cattle from which E. coli O157:H7 was not detected (nonshedders [NS]), aiming to elucidate the mechanisms involved in supershedding. In total, 14 phyla, 66 families, and 101 genera of RAJ mucosa-associated bacteria were identified and Firmicutes (61.5 ± 7.5%), Bacteroidetes (27.9 ± 6.4%), and Proteobacteria (5.5 ± 2.1%) were the predominant phyla. Differential abundance analysis of operational taxonomic units (OTUs) identified 2 OTUs unique to SS which were members of Bacteroides and Clostridium and 7 OTUs unique to NS which were members of Coprococcus, Prevotella, Clostridium, and Paludibacter Differential abundance analysis of predicted microbial functions (using PICRUSt [phylogenetic investigation of communities by reconstruction of unobserved states]) revealed that 3 pathways had higher abundance (log2 fold change, 0.10 to 0.23) whereas 12 pathways had lower abundance (log2 fold change, -0.36 to -0.20) in SS. In addition, we identified significant correlations between expression of 19 differentially expressed genes and the relative abundance of predicted microbial functions, including nucleic acid polymerization and carbohydrate and amino acid metabolism. Our findings suggest that differences in RAJ microbiota at both the compositional and functional levels may be associated with E. coli O157:H7 supershedding and that certain microbial groups and microbial functions may influence RAJ physiology of SS by affecting host gene expression.IMPORTANCE Cattle with fecal E. coli O157:H7 at >104 CFU per gram of feces have been defined as the supershedders, and they are responsible for the most of the E. coli O157:H7 spread into farm environment. Currently, no method is available for beef producers to eliminate shedding of E. coli O157:H7 in cattle, and the lack of information about the mechanisms of supershedding greatly impedes the development of effective methods. This study investigated the role of the rectoanal junction (RAJ) mucosa-associated microbiome in E. coli O157:H7 shedding, and our results indicated that the compositions and functions of RAJ microbiota differed between supershedders and nonshedders. The identified relationship between the differentially abundant microbes and 19 previously identified differentially expressed genes suggests the role of host-microbial interactions involved in E. coli O157:H7 supershedding. Our findings provide a fundamental understanding of the supershedding phenomenon which is essential for the development of strategies, such as the use of directly fed microbials, to reduce E. coli O157:H7 shedding in cattle.


Assuntos
Derrame de Bactérias , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/fisiologia , Microbioma Gastrointestinal , Canal Anal/microbiologia , Animais , Bovinos/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Expressão Gênica , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reto/microbiologia
19.
J Dairy Sci ; 101(6): 5605-5618, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29274958

RESUMO

Metagenomics and metatranscriptomics can capture the whole genome and transcriptome repertoire of microorganisms through sequencing total DNA/RNA from various environmental samples, providing both taxonomic and functional information with high resolution. The unique and complex rumen microbial ecosystem is receiving great research attention because the rumen microbiota coevolves with the host and equips ruminants with the ability to convert cellulosic plant materials to high-protein products for human consumption. To date, hundreds to thousands of microbial phylotypes have been identified in the rumen using culture-independent molecular-based approaches, and genomic information of rumen microorganisms is rapidly accumulating through the single genome sequencing. However, functional characteristics of the rumen microbiome have not been well described because there are numerous uncultivable microorganisms in the rumen. The advent of metagenomics and metatranscriptomics along with advanced bioinformatics methods can help us better understand mechanisms of the rumen fermentation, which is vital for improving nutrient utilization and animal productivity. Therefore, in this review, we summarize a general workflow to conduct rumen metagenomics and metatranscriptomics and discuss how the data can be interpreted to be useful information. Moreover, we review recent literatures studying associations between the rumen microbiome and host phenotypes (e.g., feed efficiency and methane emissions) using these approaches, aiming to provide a useful guide to include studying the rumen microbiome as one of the research objectives using these 2 approaches.


Assuntos
Metagenômica , Rúmen/microbiologia , Ruminantes , Animais , Perfilação da Expressão Gênica , Metano/metabolismo , Microbiota , Transcriptoma
20.
J Dairy Sci ; 101(1): 401-407, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102133

RESUMO

The objective of this study was to determine the effect of the heat treatment (HT, 60°C for 60 min) on the concentration of bovine colostrum oligosaccharides (bCO) in pooled bovine colostrum and the intestine of neonatal male Holstein calves after feeding. First-milking colostrum was pooled from both primiparous and multiparous cows, and half of the pooled colostrum was heat-treated at 60°C for 60 min (HC), whereas the other half was not heat-treated and remained fresh (FC). At birth, 32 male Holstein calves were randomly assigned to 1 of 3 treatment groups: (1) control calves that did not receive colostrum for the duration of the experiment and were euthanized at 6 h (NC, n = 4) or 12 h (NC, n = 4), (2) calves fed fresh colostrum (FC) and were euthanized at 6 h (FC, n = 6) or 12 h (FC, n = 6), or (3) calves fed heat-treated colostrum (HC) and euthanized at 6 h (HC, n = 6) or 12 h (HC, n = 6). All calves were fed 2 L of colostrum within 1 h after birth. At dissection, digesta of the distal jejunum, ileum, and colon was collected and analyzed by liquid chromatography-mass spectrometry to determine the concentration of bCO within each intestinal region. The heat-treated colostrum displayed numerically higher concentrations of total bCO (3,511.6 µg/g) when compared with fresh colostrum (1,329.9 µg/g), with 3'-sialyllactose being the most abundant bCO in both fresh and HT colostrum. In contrast, calves fed HT colostrum displayed a lower amount of total bCO in the distal jejunum (221.91 ± 105.3 vs. 611.26 ± 265.1 µg/g), ileum (64.97 ± 48.39 vs. 344.04 ± 216.87 µg/g), and colon (25.60 ± 13.1 vs. 267.04 ± 125.81 µg/g) at 6 h of life when compared with calves fed fresh colostrum. No differences were observed in regard to the concentrations of total bCO in the intestine of FC and HC calves at 12 h of life. It is speculated that lower concentrations of bCO in the gastrointestinal tract of HC calves at 6 h of life could be due to the early establishment of beneficial bacteria, such as Bifidobacterium, in HC calves and their subsequent metabolism of bCO as a carbon source. These findings suggest that the heat treatment of colostrum increases the amount of free bCO, which may serve as prebiotics available to microbiota within the intestine of the neonatal calf.


Assuntos
Bovinos/fisiologia , Colostro/química , Oligossacarídeos/análise , Animais , Colo/metabolismo , Colostro/efeitos dos fármacos , Feminino , Trato Gastrointestinal/metabolismo , Temperatura Alta , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA