Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomacromolecules ; 17(5): 1801-10, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27008333

RESUMO

The influence of surface charge on biodistribution and tumor accumulation remains debatable because most research has been carried out by changing the surface functional groups of nanocarriers. In this work, to avoid the interference of different surface properties such as chemical composition and hydrophilicity, polymeric micelles with uniform PEG coatings and continuously tunable sizes or zeta potentials were developed via a facile route. Therefore, the influence of surface charge on the biological functions of micelles with the same size and surface properties could be well-explored. In this case, positive charge was found to enhance both tumor cellular uptake and tumor accumulation. Immunofluorescence staining indicated that the improved tumor accumulation was mainly due to the tumor vasculature targeting of positively charged micelles. It is predicted that efficient drug delivery systems for both tumor vasculature and cancer cell targeting can be realized based on positively charged micelles.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Polímeros/química , Animais , Antibióticos Antineoplásicos/farmacologia , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/patologia , Polietilenoglicóis , Propriedades de Superfície , Distribuição Tecidual
2.
Biomacromolecules ; 16(9): 2645-55, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26133354

RESUMO

Well-defined water-soluble block copolymers poly(ethylene glycol)-b-poly(N-(2-hydroxypropyl) methacrylamide-co-N-methacryloylglycylglycine) (PEG-b-P(HPMA-co-MAGG)) and their doxorubicin (Dox) conjugates with different composition and molecular weight were synthesized. These Dox conjugates can form micelles in buffer solution. The physicochemical properties, in vivo biodistribution, blood clearance, and especially the tumor accumulation of copolymers and micelles were studied. Severe liver accumulation can be observed for PEG-b-PMAGG copolymers. This was quite different from their Dox conjugate for which decreased RES uptake and elevated kidney accumulation could be observed. When decrease the negative charge to an appropriate amount such as 8-10 mol %, both RES uptake and kidney accumulation could be suppressed. Obvious tumor accumulation could be achieved especially when the molecular weight were increased from ∼40 to ∼80 KDa. These results provided us with a guideline for the design of nanoscaled drug delivery system as well as a potential option for treating kidney-related cancers.


Assuntos
Doxorrubicina , Micelas , Neoplasias Experimentais/tratamento farmacológico , Polietilenoglicóis , Ácidos Polimetacrílicos , Animais , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ácidos Polimetacrílicos/farmacologia
3.
Adv Mater ; 34(12): e2110490, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35044690

RESUMO

The limited anticancer drug library and the frequent occurrence of drug resistance have driven monotherapy-based cancer therapy into a difficult situation. Considering the formidable process of new drug discovery, combination therapy using currently available drugs is a potential alternative. Nevertheless, the barrier between in vitro combination screening and precise in vivo delivery remains insurmountable in the current free-drug- or nanoparticle (NP)-based combination therapy, which substantially hinders the application of combination therapy. Herein, a novel, precise drug delivery strategy to realize efficient and individualized combination therapy is proposed. Nanomedicine (NM) is engineered using a microfluidics-based mixer by combining rationally designed polymeric prodrugs of three commercial chemotherapeutics and a cascade-responsive block copolymer; the NM possesses ratiometric drug loading and synchronized drug release. In addition to quantitative drug loading and precisely controlled drug combination, consistent nanoproperties of these NPs make their in vivo fate predictable. Consequently, tumor growth and metastasis can be effectively inhibited by precisely prescribed NPs derived from in vitro combination screening. This proof-of-concept study clearly reveals the feasibility of overcoming the current drug-library limitations through precise delivery of any predetermined drug combination, facilitating translational research of individualized combination therapy.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico
4.
ACS Appl Mater Interfaces ; 9(8): 6804-6815, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185449

RESUMO

The formation and development of cancer is usually accompanied by angiogenesis and is related to multiple pathways. The inhibition of one pathway by monotherapy might result in the occurrence of drug resistance, tumor relapse, or metastasis. Thus, a combinatory therapeutic system that targets several independent pathways simultaneously is preferred for the treatment. To this end, we prepared combinatory drug delivery systems consisting of cytotoxic drug SN38, pro-apoptotic KLAK peptide, and survivin siRNA with high drug loading capacity and reductive responsiveness for the treatment of multi-drug-resistant (MDR) cancer. With the help of positive charge and the synergistic effect of different drug, the combinatory systems inhibited the growth of doxorubicin-resistant breast cancer cells (MCF-7/ADR) efficiently. Interestingly, the systems without siRNA showed more superior in vivo anticancer efficacy than those with siRNA which exhibited enhanced in vitro cytotoxicity and pro-apoptotic ability. This phenomenon could be attributed to the preferential tumor accumulation, strong tumor penetration, and excellent tumor vasculature targeting ability of the combinatory micelles of SN38 and KLAK. As a result, a combinatory multitarget therapeutic system with positive charge induced tumor accumulation and vasculature targeting which can simultaneously inhibit the growth of both tumor cell and tumor vasculature was established. This work also enlightened us to the fact that the design of combinatory drug delivery systems is not just a matter of simple drug combination. Besides the cytotoxicity and pro-apoptotic ability, tumor accumulation, tumor penetration, or vascular targeting may also influence the eventual antitumor effect of the combinatory system.


Assuntos
Neoplasias da Mama , Doxorrubicina , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Células MCF-7 , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA