Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Neurol ; 92(4): 532-544, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867351

RESUMO

OBJECTIVE: Human immunodeficiency virus (HIV) persistence in blood and tissue reservoirs, including the brain, is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the central nervous system (CNS) reservoir is unclear. Here, we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH). METHODS: Total, intact, and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n = 18) or virologically suppressed (n = 12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital polymerase chain reaction (ddPCR). HIV-seronegative individuals were included as controls (n = 6). RESULTS: Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median = 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8 of 10 viremic and 6 of 9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir. INTERPRETATION: Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. ANN NEUROL 2022;92:532-544.


Assuntos
Infecções por HIV , Provírus , Antirretrovirais/uso terapêutico , Encéfalo , Linfócitos T CD4-Positivos , DNA Viral/genética , DNA Viral/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Provírus/genética , Carga Viral/métodos
2.
Growth Factors ; 36(1-2): 1-14, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29873274

RESUMO

Signal transducer and activator of transcription (STAT) 3 is a key signalling protein engaged by a multitude of growth factors and cytokines to elicit diverse biological outcomes including cellular growth, differentiation, and survival. The complete loss of STAT3 is not compatible with life and even partial loss of function mutations lead to debilitating pathologies like hyper IgE syndrome. Conversely, augmented STAT3 activity has been reported in as many as 50% of all human tumours. The dogma of STAT3 activity posits that it is a tyrosine phosphorylated transcription factor which modulates the expression of hundreds of genes. However, the regulation and biological consequences of STAT3 activation are far more complex. In addition to tyrosine phosphorylation, STAT3 is decorated with a plethora of post-translational modifications which regulate STAT3's nuclear function in addition to its non-genomic activities. In addition to these emerging complexities in the biochemical regulation of STAT3 activity, recent studies reveal that STAT3 is either oncogenic or a tumour suppressor. This review will explore these complexities.


Assuntos
Proteínas Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional
3.
J Exp Clin Cancer Res ; 42(1): 100, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098540

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer with an appalling overall survival of less than 5% (Zimmerman et al. J Thor Oncol 14:768-83, 2019). Patients typically respond to front line platinum-based doublet chemotherapy, but almost universally relapse with drug resistant disease. Elevated MYC expression is common in SCLC and has been associated with platinum resistance. This study evaluates the capacity of MYC to drive platinum resistance and through screening identifies a drug capable of reducing MYC expression and overcoming resistance. METHODS: Elevated MYC expression following the acquisition of platinum resistance in vitro and in vivo was assessed. Moreover, the capacity of enforced MYC expression to drive platinum resistance was defined in SCLC cell lines and in a genetically engineered mouse model that expresses MYC specifically in lung tumors. High throughput drug screening was used to identify drugs able to kill MYC-expressing, platinum resistant cell lines. The capacity of this drug to treat SCLC was defined in vivo in both transplant models using cell lines and patient derived xenografts and in combination with platinum and etoposide chemotherapy in an autochthonous mouse model of platinum resistant SCLC. RESULTS: MYC expression is elevated following the acquisition of platinum resistance and constitutively high MYC expression drives platinum resistance in vitro and in vivo. We show that fimepinostat decreases MYC expression and that it is an effective single agent treatment for SCLC in vitro and in vivo. Indeed, fimepinostat is as effective as platinum-etoposide treatment in vivo. Importantly, when combined with platinum and etoposide, fimepinostat achieves a significant increase in survival. CONCLUSIONS: MYC is a potent driver of platinum resistance in SCLC that is effectively treated with fimepinostat.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Etoposídeo/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinases , Platina/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA