Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Diabetologia ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967669

RESUMO

AIMS/HYPOTHESIS: tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes. METHODS: Global profiling of the tRFs present in pancreatic islets of 4- and 8-week-old NOD mice and in extracellular vesicles released by activated CD4+ T lymphocytes was performed by small RNA-seq. Changes in the level of specific fragments were confirmed by quantitative PCR. The transfer of tRFs from immune cells to beta cells occurring during insulitis was assessed using an RNA-tagging approach. The functional role of tRFs increasing in beta cells during the initial phases of type 1 diabetes was determined by overexpressing them in dissociated islet cells and by determining the impact on gene expression and beta cell apoptosis. RESULTS: We found that the tRF pool was altered in the islets of NOD mice during the initial phases of type 1 diabetes. Part of these changes were triggered by prolonged exposure of beta cells to proinflammatory cytokines (IL-1ß, TNF-α and IFN-γ) while others resulted from the delivery of tRFs produced by CD4+ T lymphocytes infiltrating the islets. Indeed, we identified several tRFs that were enriched in extracellular vesicles from CD4+/CD25- T cells and were transferred to beta cells upon adoptive transfer of these immune cells in NOD.SCID mice. The tRFs delivered to beta cells during the autoimmune reaction triggered gene expression changes that affected the immune regulatory capacity of insulin-secreting cells and rendered the cells more prone to apoptosis. CONCLUSIONS/INTERPRETATION: Our data point to tRFs as novel players in the crosstalk between the immune system and insulin-secreting cells and suggest a potential involvement of this novel class of non-coding RNAs in type 1 diabetes pathogenesis. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus (GEO) with accession numbers GSE242568 and GSE256343.

2.
Xenotransplantation ; 26(2): e12474, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30461074

RESUMO

BACKGROUND: Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated ß-cell loss. METHODS: Diabetic immunodeficient NOD.scid mice were transplanted with human islets and subsequently achieved stable normoglycemia. Lymphocytes from NOD mice were then adoptively transferred to the humanized mice to induce human ß-cell destruction. Islet graft and plasma were collected immediately once blood glucose reached >200 mg/dL. miRNAs in the islet grafts and in the plasma with or without adoptive lymphocyte transfer (ALT) were measured using NanoString nCounter® miRNA Expression Assay and qPCR. RESULTS: A set of immune-related miRNAs was significantly increased in human islet grafts of ALT-treated mice compared to control mice. Of these miRNAs, miR-150-5p was significantly increased in the circulation of ALT-treated mice at tissue collection and the increase was a result of immune activation rather than simply the presence of lymphocytes in circulation. Furthermore, miR-150-5p was significantly increased in human islet graft and circulation prior to the development of hyperglycemia in the ALT-treated mice. CONCLUSIONS: Our data demonstrated that immune-related miRNAs are associated with human islet xenograft rejection in mice. miR-150-5p is increased in human islet graft and in the circulation during islet xenograft rejection and ß-cell destruction prior to hyperglycemia and may be an early biomarker for islet xenograft rejection.


Assuntos
Transplante das Ilhotas Pancreáticas/imunologia , Linfócitos/imunologia , MicroRNAs/genética , Transplante Heterólogo , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/imunologia , Transplante Heterólogo/métodos
3.
Diabetologia ; 60(10): 1977-1986, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28711973

RESUMO

AIMS/HYPOTHESIS: P-element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs) are small non-coding RNAs that interact with PIWI proteins and guide them to silence transposable elements. They are abundantly expressed in germline cells and play key roles in spermatogenesis. There is mounting evidence that piRNAs are also present in somatic cells, where they may accomplish additional regulatory tasks. The aim of this study was to identify the piRNAs expressed in pancreatic islets and to determine whether they are involved in the control of beta cell activities. METHODS: piRNA profiling of rat pancreatic islets was performed by microarray analysis. The functions of piRNAs were investigated by silencing the two main Piwi genes or by modulating the level of selected piRNAs in islet cells. RESULTS: We detected about 18,000 piRNAs in rat pancreatic islets, many of which were differentially expressed throughout islet postnatal development. Moreover, we identified changes in the level of several piRNAs in the islets of Goto-Kakizaki rats, a well-established animal model of type 2 diabetes. Silencing of Piwil2 or Piwil4 genes in adult rat islets caused a reduction in the level of several piRNAs and resulted in defective insulin secretion and increased resistance of the cells to cytokine-induced cell death. Furthermore, overexpression in the islets of control animals of two piRNAs that are upregulated in diabetic rats led to a selective defect in glucose-induced insulin release. CONCLUSIONS/INTERPRETATION: Our results provide evidence for a role of PIWI proteins and their associated piRNAs in the control of beta cell functions, and suggest a possible involvement in the development of type 2 diabetes. DATA AVAILABILITY: Data have been deposited in Gene Expression Omnibus repository under the accession number GSE93792. Data can be accessed via the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ojklueugdzehpkv&acc=GSE93792.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Perfilação da Expressão Gênica , Secreção de Insulina , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
Diabetologia ; 60(10): 2011-2020, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28674733

RESUMO

AIMS/HYPOTHESIS: Evidence continues to emerge detailing a fine-tuning of the regulation of metabolic processes and energy homeostasis by cell-autonomous circadian clocks. Pancreatic beta cell functional maturation occurs after birth and implies transcriptional changes triggered by a shift in the nutritional supply that occurs at weaning, enabling the adaptation of insulin secretion. So far, the developmental timing and exact mechanisms involved in the initiation of the circadian clock in the growing pancreatic islets have never been addressed. METHODS: Circadian gene expression was measured by quantitative RT-PCR in islets of rats at different postnatal ages up to 3 months, and by in vitro bioluminescence recording in newborn (10-day-old) and adult (3-month-old) islets. The effect of the microRNAs miR-17-5p and miR-29b-3p on the expression of target circadian genes was assessed in newborn rat islets transfected with microRNA antisense or mimic oligonucleotides, and luciferase reporter assays were performed on the rat insulin-secreting cell line INS832/13 to determine a direct effect. The global regulatory network between microRNAs and circadian genes was computationally predicted. RESULTS: We found up to a sixfold-change in the 24 h transcriptional oscillations and overall expression of Clock, Npas2, Bmal1, Bmal2, Rev-erbα, Per1, Per2, Per3 and Cry2 between newborn and adult rat islets. Synchronisation of the clock machinery in cultured islet cells revealed a delayed cell-autonomous rhythmicity of about 1.5 h in newborn compared with adult rats. Computational predictions unveiled the existence of a complex regulatory network linking over 40 microRNAs displaying modifications in their expression profiles during postnatal beta cell maturation and key core-clock genes. In agreement with these computational predictions, we demonstrated that miR-17-5p and miR-29b-3p directly regulated circadian gene expression in the maturing islet cells of 10-day-old rats. CONCLUSIONS/INTERPRETATION: These data show that the circadian clock is not fully operational in newborn islets and that microRNAs potently contribute to its regulation during postnatal beta cell maturation. Defects in this process may have long-term consequences on circadian physiology and pancreatic islet function, favouring the manifestation of metabolic diseases such as diabetes.


Assuntos
Relógios Circadianos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Regulação da Expressão Gênica/fisiologia , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo , Animais , Animais Recém-Nascidos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Feminino , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley
5.
Biochim Biophys Acta ; 1861(12 Pt B): 2121-2129, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27178175

RESUMO

MicroRNAs are key regulators of ß-cell physiology. They participate to the differentiation of insulin-producing cells and are instrumental for the acquisition of their unique secretory properties. Moreover, they contribute to the adaptation of ß-cells to conditions of increased insulin demand and, if expressed at inappropriate levels, certain microRNAs cause ß-cell dysfunction and promote the development of different forms of diabetes mellitus. While these functions are increasingly better understood, additional tasks for these small non-coding RNAs have been recently unveiled. Thus, microRNAs are emerging as signaling molecules of a novel exosome-mediated cell-to-cell communication mode permitting a coordinated response of the ß-cells to inflammatory conditions and to modifications in the insulin demand. These discoveries raise a number of important issues that once addressed promise to shed new light on the molecular mechanism governing the functions of the ß-cells under normal and disease states. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.


Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/fisiologia , Humanos , Inflamação/patologia , Células Secretoras de Insulina/fisiologia
6.
Diabetes Obes Metab ; 19 Suppl 1: 137-146, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28880477

RESUMO

Blood glucose homeostasis requires a constant communication between insulin-secreting and insulin-sensitive cells. A wide variety of circulating factors, including hormones, cytokines and chemokines work together to orchestrate the systemic response of metabolic organs to changes in the nutritional state. Failure in the coordination between these organs can lead to a rise in blood glucose levels and to the appearance of metabolic disorders such as diabetes mellitus. Exosomes are small extracellular vesicles (EVs) that are produced via the endosomal pathway and are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that these EVs play a central role in cell-to-cell communication. The interest in exosomes exploded when they were found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. In this review, we will first outline the mechanisms governing the biogenesis, the cargo upload and the release of exosomes by donor cells as well as the uptake by recipient cells. We will then summarize the studies that support the novel concept that miRNAs and other exosomal cargo components are new important vehicles for metabolic organ cross-talk.


Assuntos
Comunicação Celular , Exossomos/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , RNA Mensageiro/metabolismo , Animais , Comunicação Autócrina , Diabetes Mellitus/patologia , Diabetes Mellitus/fisiopatologia , Endocitose , Endossomos/metabolismo , Endossomos/patologia , Endossomos/fisiologia , Exocitose , Exossomos/patologia , Exossomos/fisiologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , MicroRNAs/fisiologia , Biogênese de Organelas , Comunicação Parácrina , RNA Mensageiro/fisiologia
7.
Diabetologia ; 59(1): 161-169, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474776

RESUMO

AIMS/HYPOTHESIS: Ageing can lead to reduced insulin sensitivity and loss of pancreatic beta cell function, predisposing individuals to the development of diabetes. The aim of this study was to assess the contribution of microRNAs (miRNAs) to age-associated beta cell dysfunction. METHODS: The global mRNA and miRNA profiles of 3- and 12-month-old rat islets were collected by microarray. The functional impact of age-associated differences in miRNA expression was investigated by mimicking the observed changes in primary beta cells from young animals. RESULTS: Beta cells from 12-month-old rats retained normal insulin content and secretion, but failed to proliferate in response to mitotic stimuli. The islets of these animals displayed modifications at the level of several miRNAs, including upregulation of miR-34a, miR-124a and miR-383, and downregulation of miR-130b and miR-181a. Computational analysis of the transcriptomic modifications observed in the islets of 12-month-old rats revealed that the differentially expressed genes were enriched for miR-34a and miR-181a targets. Indeed, the induction of miR-34a and reduction of miR-181a in the islets of young animals mimicked the impaired beta cell proliferation observed in old animals. mRNA coding for alpha-type platelet-derived growth factor receptor, which is critical for compensatory beta cell mass expansion, is directly inhibited by miR34a and is likely to be at least partly responsible for the effects of this miRNA. CONCLUSIONS/INTERPRETATION: Changes in the level of specific miRNAs that occur during ageing affect the proliferative capacity of beta cells. This might reduce their ability to expand under conditions of increased insulin demand, favouring the development of type 2 diabetes.


Assuntos
Envelhecimento , Regulação da Expressão Gênica , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , MicroRNAs/metabolismo , Animais , Apoptose , Proliferação de Células , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transcriptoma , Transfecção
8.
Diabetologia ; 59(5): 1049-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852333

RESUMO

AIMS/HYPOTHESIS: The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS: Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS: In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION: Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.


Assuntos
Exossomos/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo
9.
Diabetologia ; 58(3): 456-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512004

RESUMO

MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can lead to cellular dysfunction that favours the appearance of several diseases. A specific set of microRNAs plays a crucial role in pancreatic beta cell differentiation and is essential for the fine-tuning of insulin secretion and for compensatory beta cell mass expansion in response to insulin resistance. Recently, several independent studies reported alterations in microRNA levels in the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, many of the changes in microRNA expression observed in animal models of diabetes were not detected in the islets of diabetic patients and vice versa. These findings are unlikely to merely reflect species differences because microRNAs are highly conserved in mammals. These puzzling results are most probably explained by fundamental differences in the experimental approaches which selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs predisposing individuals to the disease or the microRNAs displaying expression changes subsequent to the development of diabetes. In this review we will highlight the suitability of the different models for addressing each of these questions and propose future strategies that should allow us to obtain a better understanding of the contribution of microRNAs to the development of diabetes mellitus in humans.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Humanos , Insulina/genética , Insulina/metabolismo
10.
Cell Commun Signal ; 13: 17, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25880779

RESUMO

BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.


Assuntos
Apoptose , Exossomos/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular , Humanos , Camundongos , Ratos
11.
Mol Metab ; 84: 101955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704026

RESUMO

OBJECTIVE: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS: We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS: Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic ß-cells. CONCLUSIONS: Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , Mitocôndrias , Animais , Ratos , Humanos , Mitocôndrias/metabolismo , Células Secretoras de Insulina/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Masculino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Camundongos , Ratos Wistar , Transporte de Elétrons
12.
Diabetologia ; 56(10): 2203-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842730

RESUMO

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Obesidade/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Ratos , Ratos Wistar
13.
Cell Rep ; 40(2): 111069, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830789

RESUMO

tRNA-derived fragments (tRFs) are an emerging class of small non-coding RNAs with distinct cellular functions. Here, we studied the contribution of tRFs to the regulation of postnatal ß cell maturation, a critical process that may lead to diabetes susceptibility in adulthood. We identified three tRFs abundant in neonatal rat islets originating from 5' halves (tiRNA-5s) of histidine and glutamate tRNAs. Their inhibition in these islets reduced ß cell proliferation and insulin secretion. Mitochondrial respiration was also perturbed, fitting with the mitochondrial enrichment of nuclear-encoded tiRNA-5HisGTG and tiRNA-5GluCTC. Notably, tiRNA-5 inhibition reduced Mpc1, a mitochondrial pyruvate carrier whose knock down largely phenocopied tiRNA-5 inhibition. tiRNA-5HisGTG interactome revealed binding to Musashi-1, which was essential for the mitochondrial enrichment of tiRNA-5HisGTG. Finally, tiRNA-5s were dysregulated in the islets of diabetic and diabetes-prone animals. Altogether, tiRNA-5s represent a class of regulators of ß cell maturation, and their deregulation in neonatal islets may lead to diabetes susceptibility in adulthood.


Assuntos
Células Secretoras de Insulina , RNA de Transferência , Animais , Proliferação de Células , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ratos
14.
Sci Rep ; 11(1): 8800, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888791

RESUMO

Glucose-induced insulin secretion, a hallmark of mature ß-cells, is achieved after birth and is preceded by a phase of intense proliferation. These events occurring in the neonatal period are decisive for establishing an appropriate functional ß-cell mass that provides the required insulin throughout life. However, key regulators of gene expression involved in functional maturation of ß-cells remain to be elucidated. Here, we addressed this issue by mapping open chromatin regions in newborn versus adult rat islets using the ATAC-seq assay. We obtained a genome-wide picture of chromatin accessible sites (~ 100,000) among which 20% were differentially accessible during maturation. An enrichment analysis of transcription factor binding sites identified a group of transcription factors that could explain these changes. Among them, Scrt1 was found to act as a transcriptional repressor and to control ß-cell proliferation. Interestingly, Scrt1 expression was controlled by the transcriptional repressor RE-1 silencing transcription factor (REST) and was increased in an in vitro reprogramming system of pancreatic exocrine cells to ß-like cells. Overall, this study led to the identification of several known and unforeseen key transcriptional events occurring during ß-cell maturation. These findings will help defining new strategies to induce the functional maturation of surrogate insulin-producing cells.


Assuntos
Proliferação de Células/fisiologia , Cromatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/citologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Humanos , Ratos
15.
J Biol Chem ; 284(25): 16848-16859, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19389712

RESUMO

Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Insulina/metabolismo , Animais , Sequência de Bases , Hidrolases de Éster Carboxílico/deficiência , Hidrolases de Éster Carboxílico/genética , Linhagem Celular , Jejum/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucose/farmacologia , Técnica Clamp de Glucose , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Lipólise , Masculino , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais , Triglicerídeos/metabolismo
16.
Compr Physiol ; 10(3): 893-932, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32941685

RESUMO

The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and ß-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between ß-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.


Assuntos
Diabetes Mellitus/genética , Células Secretoras de Insulina/fisiologia , RNA não Traduzido/genética , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Regulação da Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
17.
Sci Rep ; 10(1): 8354, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415214

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Rep ; 10(1): 6413, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286361

RESUMO

Long non-coding RNAs (lncRNAs) contribute to diverse cellular functions and the dysregulation of their expression or function can contribute to diseases, including diabetes. The contributions of lncRNAs to ß-cell development, function and survival has been extensively studied in vitro. However, very little is currently known on the in vivo roles of lncRNAs in the regulation of glucose and insulin homeostasis. Here we investigated the impact of loss-of-function in mice of the lncRNA A830019P07Rik, hereafter P07Rik, which was previously reported to be associated with reduced plasma insulin levels. Compared with wild-type littermates, male and female P07Rik mutant mice did not show any defect in glycaemia and plasma insulin levels in both fed and fasted state. Furthermore, P07Rik mutant mice displayed similar glucose and insulin levels in response to an intra-peritoneal glucose tolerance test. Ex vivo, islets from mutant P07Rik released similar amount of insulin in response to increased glucose concentration as wildtype littermates. In contrast with previous reports, our characterization of P07Rik mouse mutants revealed that loss of function of this lncRNA does not affect glucose and insulin homeostasis in mice.


Assuntos
Secreção de Insulina/genética , Insulina/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Sequência Conservada/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Regulação para Baixo/genética , Jejum/sangue , Comportamento Alimentar , Feminino , Homeostase , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Obesos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
EBioMedicine ; 58: 102895, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32739864

RESUMO

BACKGROUND: Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our aim was to identify pathways, evident in the islet transcriptome, that characterize the adaptive response to bariatric surgery independently of body weight changes. METHODS: We performed entero-gastro-anastomosis (EGA) with pyloric ligature in leptin-deficient ob/ob mice as a surrogate of Roux-en-Y gastric bypass (RYGB) in humans. Multiple approaches such as determination of glucose tolerance, GLP-1 and insulin secretion, whole body insulin sensitivity, ex vivo glucose-stimulated insulin secretion (GSIS) and functional multicellular Ca2+-imaging, profiling of mRNA and of miRNA expression were utilized to identify significant biological processes involved in pancreatic islet recovery. FINDINGS: EGA resolved diabetes, increased pancreatic insulin content and GSIS despite a persistent increase in fat mass, systemic and intra-islet inflammation, and lipotoxicity. Surgery differentially regulated 193 genes in the islet, most of which were involved in the regulation of glucose metabolism, insulin secretion, calcium signaling or beta cell viability, and these were normalized alongside changes in glucose metabolism, intracellular Ca2+ dynamics and the threshold for GSIS. Furthermore, 27 islet miRNAs were differentially regulated, four of them hubs in a miRNA-gene interaction network and four others part of a blood signature of diabetes resolution in ob/ob mice and in humans. INTERPRETATION: Taken together, our data highlight novel miRNA-gene interactions in the pancreatic islet during the resolution of diabetes after bariatric surgery that form part of a blood signature of diabetes reversal. FUNDING: European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking (RHAPSODY), INSERM, Société Francophone du Diabète, Institut Benjamin Delessert, Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1), Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants, National Science Foundation (310030-188447), Fondation de l'Avenir.


Assuntos
Diabetes Mellitus Tipo 2/cirurgia , Redes Reguladoras de Genes , Células Secretoras de Insulina/química , MicroRNAs/genética , Obesidade/cirurgia , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Derivação Gástrica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo
20.
Nat Commun ; 11(1): 5611, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154349

RESUMO

Fine-tuning of insulin release from pancreatic ß-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of ß-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding ß-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder.


Assuntos
Secreção de Insulina/genética , Insulina/genética , Íntrons , RNA Circular/metabolismo , Animais , Sinalização do Cálcio , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , RNA Circular/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA