Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 55(2): 495-503, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27927927

RESUMO

American tegumentary leishmaniasis (ATL) (also known as cutaneous leishmaniasis [CL]) is caused by various species of protozoa of the genus Leishmania The diagnosis is achieved on a clinical, epidemiological, and pathological basis, supported by positive parasitological exams and demonstration of leishmanin delayed-type hypersensitivity. Serological assays are not routinely used in the diagnosis because many are considered to have low sensitivity and the particular Leishmania species causing the disease can lead to variable performance. In the present study, we generated recombinant versions of two highly conserved Leishmania proteins, Leishmania (Viannia) braziliensis-derived Lb8E and Lb6H, and evaluated both in enzyme-linked immunosorbent assays (ELISA). Recombinant Lb6H (rLb6H) had better performance and reacted with 100.0% of the ATL and 89.4% of the VL samples. These reactions with rLb6H were highly specific (98.5%) when compared against those for samples from healthy control individuals. We then assessed rLb6H against sera from ATL patients infected with different species of Leishmania prevalent in Brazil [Leishmania (Leishmania) amazonensis, L (Viannia) braziliensis, and L (V) guyanensis] and samples from patients with other infectious diseases. In analyses of 500 sera, ELISA using rLb6H detected all 219 ATL samples (sensitivity of 100.0%) with an overall specificity of 93.9% (considering healthy individuals and other infectious diseases patients). Only a minority of samples from Chagas disease patients possessed antibodies against rLb6H, and all of these responses were low (with a highest reactivity index of 2.2). Taken together, our data support further evaluation of rLb6H and the potential for its routine use in the serological diagnosis of ATL.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Leishmania/imunologia , Leishmaniose Cutânea/diagnóstico , Proteínas Recombinantes/imunologia , Testes Sorológicos/métodos , Adolescente , Adulto , Idoso , Antígenos de Protozoários/genética , Criança , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Adulto Jovem
2.
Biomacromolecules ; 17(1): 165-72, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26652915

RESUMO

The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∼60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic.


Assuntos
Adjuvantes Imunológicos/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Esqualeno/análogos & derivados , Esqualeno/química , Vacinas/química , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Emulsões/química , Tamanho da Partícula , Polimerização
3.
Eur J Immunol ; 43(9): 2398-408, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23716300

RESUMO

Glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) is a synthetic adjuvant TLR4 agonist that promotes potent poly-functional T(H)1 responses. Different TLR4 agonists may preferentially signal via MyD88 or TIR-domain-containing adapter inducing IFN-beta (TRIF) to exert adjuvant effects; however, the contribution of MyD88 and TRIF signaling to the induction of polyclonal T(H)1 responses by TLR4 agonist adjuvants has not been studied in vivo. To determine whether GLA-SE preferentially signals through MyD88 or TRIF, we evaluated the immune response against a candidate tuberculosis (TB) vaccine Ag following immunization of mice lacking either signaling adapter compared with that of wild-type mice. We find that both MyD88 and TRIF are necessary for GLA-SE to induce a poly-functional T(H)1 immune response characterized by CD4(+) T cells producing IFN-γ, TNF, and IL-2, as well as IgG2c class switching, when paired with the TB vaccine Ag ID93. Accordingly, the protective efficacy of ID93/GLA-SE immunization against aerosolized Mycobacterium tuberculosis was lost when either signaling molecule was ablated. We demonstrate that MyD88 and TRIF must be expressed in the same cell for the in vivo T(H)1-skewing adjuvant activity, indicating that these two signaling pathways cooperate on an intracellular level. Thus engagement of both the MyD88 and TRIF signaling pathways are essential for the effective adjuvant activity of this TLR4 agonist.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunização , Switching de Imunoglobulina/imunologia , Interferon gama/biossíntese , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Mycobacterium/imunologia , Mycobacterium tuberculosis/imunologia , Receptores de IgG/metabolismo , Transdução de Sinais/imunologia , Vacinas contra a Tuberculose/imunologia , Fator de Necrose Tumoral alfa/biossíntese
4.
J Nanobiotechnology ; 12: 17, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24766820

RESUMO

BACKGROUND: Recent reports that TLR4 and TLR7 ligands can synergistically trigger Th1 biased immune responses suggest that an adjuvant that contains both ligands would be an excellent candidate for co-administration with vaccine antigens for which heavily Th1 biased responses are desired. Ligands of each of these TLRs generally have disparate biochemical properties, however, and straightforward co-formulation may represent an obstacle. RESULTS: We show here that the TLR7 ligand, imiquimod, and the TLR4 ligand, GLA, synergistically trigger responses in human whole blood. We combined these ligands in an anionic liposomal formulation where the TLR7 ligand is in the interior of the liposome and the TLR4 ligand intercalates into the lipid bilayer. The new liposomal formulations are stable for at least a year and have an attractive average particle size of around 140 nm allowing sterile filtration. The synergistic adjuvant biases away from Th2 responses, as seen by significantly reduced IL-5 and enhanced interferon gamma production upon antigen-specific stimulation of cells from immunized mice, than any of the liposomal formulations with only one TLR agonist. Qualitative alterations in antibody responses in mice demonstrate that the adjuvant enhances Th1 adaptive immune responses above any adjuvant containing only a single TLR ligand as well. CONCLUSION: We now have a manufacturable, synergistic TLR4/TLR7 adjuvant that is made with excipients and agonists that are pharmaceutically acceptable and will have a straightforward path into human clinical trials.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Aminoquinolinas/administração & dosagem , Sinergismo Farmacológico , Lipossomos/química , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Adjuvantes Imunológicos/farmacologia , Aminoquinolinas/farmacologia , Animais , Feminino , Humanos , Imiquimode , Lipídeos/administração & dosagem , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/efeitos dos fármacos , Células Th1/imunologia
5.
BMC Infect Dis ; 13: 331, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23870715

RESUMO

BACKGROUND: Soluble CD40 ligand (sCD40L) and matrix metalloproteinase 9 (MMP-9) are inflammation markers and have been poorly described in infectious disease. In this prospective study, we describe the sera kinetics of these two molecules in the course of treatment follow up in human visceral leishmaniasis (VL). METHODS: Sera from VL patients were collected before and during follow up of regular Antimony treatment. sCD40L and MMP-9 were measured by Luminex assay. Paired analysis by Wilcoxon signed test was used for comparison of values of the same subjects before and after initiation of treatment. Correlations between clinical data and parasite load with the serum levels of sCD40L and MMP-9 were performed by Spearman test. Tests were considered statistically significant if the probability of a type I error was less than 5% (p-value < 0.05). RESULTS: While sCD40L and MMP-9 were not observed in sera from non endemic controls which are at low risk of Leishmania chagasi infection, elevated levels were observed in sera from VL patients, and an increase in sCD40L and MMP-9 levels were detectable during the follow-up of VL patients undergoing antimony treatment. sCD40L levels were also high in individuals living in endemic settings at high risk of infection (endemic controls). Additionally, negative correlations were found between spleen sizes and MMP-9 before treatment and sCD40L at day 15 of treatment. Negative correlations were also found between parasite load with both sCD40L and MMP-9. CONCLUSION: Serum sCD40L and MMP-9 are identified as new and simple biomarkers in two situations: (i) monitoring the success of therapy and (ii) predicting favorable clinical outcome of human VL.


Assuntos
Antígenos CD40/sangue , Leishmaniose Visceral/sangue , Metaloproteinase 9 da Matriz/sangue , Adolescente , Adulto , Biomarcadores/sangue , Criança , Feminino , Humanos , Leishmaniose Visceral/diagnóstico , Masculino , Carga Parasitária , Prognóstico
6.
J Nanobiotechnology ; 11: 43, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359024

RESUMO

BACKGROUND: Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. RESULTS: DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. CONCLUSIONS: Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition.


Assuntos
Adjuvantes Imunológicos/química , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Nanoestruturas/química , Proteínas de Protozoários/imunologia , 1,2-Dipalmitoilfosfatidilcolina/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/normas , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Soluções Tampão , Citocinas/biossíntese , Citocinas/imunologia , Estabilidade de Medicamentos , Feminino , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Malária/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/normas , Tamanho da Partícula , Plasmodium berghei/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sonicação , Suspensões , Receptor 4 Toll-Like/imunologia
7.
NPJ Vaccines ; 8(1): 14, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797262

RESUMO

Synthetic biology has allowed for the industrial production of supply-limited sesquiterpenoids such as the antimalarial drug artemisinin and ß-farnesene. One of the only unmodified animal products used in medicine is squalene, a triterpenoid derived from shark liver oil, which when formulated into an emulsion is used as a vaccine adjuvant to enhance immune responses in licensed vaccines. However, overfishing is depleting deep-sea shark populations, leading to potential supply problems for squalene. We chemically generated over 20 squalene analogues from fermentation-derived ß-farnesene and evaluated adjuvant activity of the emulsified compounds compared to shark squalene emulsion. By employing a desirability function approach that incorporated multiple immune readouts, we identified analogues with enhanced, equivalent, or decreased adjuvant activity compared to shark squalene emulsion. Availability of a library of structurally related analogues allowed elucidation of structure-function relationships. Thus, combining industrial synthetic biology with chemistry and immunology enabled generation of sustainable terpenoid-based vaccine adjuvants comparable to current shark squalene-based adjuvants while illuminating structural properties important for adjuvant activity.

8.
Polymers (Basel) ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765685

RESUMO

This report details the first systematic screening of free-radical-produced methacrylate oligomer reaction mixtures as alternative vaccine adjuvant components to replace the current benchmark compound squalene, which is unsustainably sourced from shark livers. Homo-/co-oligomer mixtures of methyl, butyl, lauryl, and stearyl methacrylate were successfully synthesized using catalytic chain transfer control, where the use of microwave heating was shown to promote propagation over chain transfer. Controlling the mixture material properties allowed the correct viscosity to be achieved, enabling the mixtures to be effectively used in vaccine formulations. Emulsions of selected oligomers stimulated comparable cytokine levels to squalene emulsion when incubated with human whole blood and elicited an antigen-specific cellular immune response when administered with an inactivated influenza vaccine, indicating the potential utility of the compounds as vaccine adjuvant components. Furthermore, the oligomers' molecular sizes were demonstrated to be large enough to enable greater emulsion stability than squalene, especially at high temperatures, but are predicted to be small enough to allow for rapid clearance from the body.

9.
J Immunol ; 185(3): 1701-10, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20601594

RESUMO

Therapy of intracellular pathogens can be complicated by drug toxicity, drug resistance, and the need for prolonged treatment regimens. One approach that has shown promise is immunotherapy. Leishmaniasis, a vector-borne disease ranked among the six most important tropical infectious diseases by the World Health Organization, has been treated clinically with crude or defined vaccine preparations or cytokines, such as IFN-gamma and GM-CSF, in combination with chemotherapy. We have attempted to develop an improved and defined immunotherapeutic using a mouse model of cutaneous leishmaniasis. We hypothesized that immunotherapy may be improved by using TLR synergy to enhance the parasite-specific immune response. We formulated L110f, a well-established Leishmania poly-protein vaccine candidate, in conjunction with either monophosphoryl lipid A, a TLR4 agonist, or CpG, a TLR9 agonist, or a combination of these, and evaluated anti-Leishmania immune responses in absence or presence of active disease. Only mice treated with L110f plus monophosphoryl lipid A-CpG were able to induce a strong effective T cell response during disease and subsequently cured lesions and reduced parasite burden when compared with mice treated with L110f and either single adjuvant. Our data help to define a correlate of protection during active infection and indicate TLR synergy to be a potentially valuable tool in treating intracellular infections.


Assuntos
Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/terapia , Receptores Toll-Like/fisiologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/fisiologia , Quimioterapia Combinada , Feminino , Interleucina-12/biossíntese , Leishmaniose Cutânea/microbiologia , Lipídeo A/administração & dosagem , Lipídeo A/análogos & derivados , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/administração & dosagem , Pirina , Receptores Toll-Like/agonistas
10.
Pharmaceutics ; 14(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36559051

RESUMO

Immunogenic agents known as adjuvants play a critical role in many vaccine formulations. Adjuvants often signal through Toll-like receptor (TLR) pathways, including formulations in licensed vaccines that target TLR4. While TLR4 is predominantly known for responding to lipopolysaccharide (LPS), a component of Gram-negative bacterial membranes, it has been shown to be a receptor for a number of molecular structures, including phospholipids. Therefore, phospholipid-based pharmaceutical formulations might have off-target effects by signaling through TLR4, confounding interpretation of pharmaceutical bioactivity. In this study we examined the individual components of a clinical stage oil-in-water vaccine adjuvant emulsion (referred to as a stable emulsion or SE) and their ability to signal through murine and human TLR4s. We found that the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) activated TLR4 and elicited many of the same immune phenotypes as canonical TLR4 agonists. This pathway was dependent on the saturation, size, and headgroup of the phospholipid. Interestingly, DMPC effects on human cells were evident but overall appeared less impactful than emulsion oil composition. Considering the prevalence of DMPC and other phospholipids used across the pharmaceutical space, these findings may contextualize off-target innate immune responses that could impact preclinical and clinical development.

11.
Front Immunol ; 13: 1002430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389677

RESUMO

PfRipr is a highly conserved asexual-blood stage malaria vaccine candidate against Plasmodium falciparum. PfRipr5, a protein fragment of PfRipr inducing the most potent inhibitory antibodies, is a promising candidate for the development of next-generation malaria vaccines, requiring validation of its potential when formulated with adjuvants already approved for human use. In this study, PfRipr5 antigen was efficiently produced in a tank bioreactor using insect High Five cells and the baculovirus expression vector system; purified PfRipr5 was thermally stable in its monomeric form, had high purity and binding capacity to functional monoclonal anti-PfRipr antibody. The formulation of purified PfRipr5 with Alhydrogel®, GLA-SE or CAF®01 adjuvants accepted for human use showed acceptable compatibility. Rabbits immunized with these formulations induced comparable levels of anti-PfRipr5 antibodies, and significantly higher than the control group immunized with PfRipr5 alone. To investigate the efficacy of the antibodies, we used an in vitro parasite growth inhibition assay (GIA). The highest average GIA activity amongst all groups was attained with antibodies induced by immunization with PfRipr5 formulated with CAF®01. Overall, this study validates the potential of adjuvanted PfRipr5 as an asexual blood-stage malaria vaccine candidate, with PfRipr5/CAF®01 being a promising formulation for subsequent pre-clinical and clinical development.


Assuntos
Vacinas Antimaláricas , Animais , Humanos , Coelhos , Antígenos de Protozoários , Anticorpos Antiprotozoários , Plasmodium falciparum , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
12.
Int J Pharm ; 626: 122141, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058408

RESUMO

Amebiasis, a disease caused by the parasite Entamoeba histolytica, is estimated to cause millions of infections and at least 55,000 deaths globally each year. With no vaccine currently available, there is an urgent need for an accessible means of stimulating protective mucosal immunity. The objective of this study was to characterize the nasal spray of a novel amebiasis vaccine candidate from a syringe-based liquid atomization device, the Teleflex MAD Nasal™, in both adult and infant nasal airways. Human ergonomic testing was completed to determine realistic actuation parameters. Spray pattern, plume geometry, and droplet size distribution were measured to evaluate reproducibility of free plume characteristics. The Alberta Idealized Nasal Inlet (AINI) and three realistic infant nasal airways were used to determine the in vitro deposition profile in adult and infant airways, respectively. Collectively, in vitro results demonstrated the feasibility of delivering the vaccine candidate to target sites within the nasal airways. Penetration through the nasal airways that could lead to deposition in the lungs was below the limit of quantification for both adult and infant geometries, indicating a low likelihood of adverse events due to lung exposure. These results support continued investigation of intranasal delivery of the synthetic Entamoeba histolytica vaccine.


Assuntos
Amebíase , Entamoeba histolytica , Adjuvantes Farmacêuticos , Adjuvantes de Vacinas , Administração Intranasal , Adulto , Aerossóis , Humanos , Lipossomos , Sprays Nasais , Reprodutibilidade dos Testes , Vacinas Sintéticas
13.
Artigo em Inglês | MEDLINE | ID: mdl-37771324

RESUMO

Promising clinical efficacy results have generated considerable enthusiasm for the potential impact of adjuvant-containing subunit tuberculosis vaccines. The development of a thermostable tuberculosis vaccine formulation could have significant benefits on both the cost and feasibility of global vaccine distribution. The tuberculosis vaccine candidate ID93 + GLA-SE has reached Phase 2 clinical testing, demonstrating safety and immunogenicity as a two-vial point-of-care mixture. Earlier publications have detailed efforts to develop a lead candidate single-vial lyophilized thermostable ID93 + GLA-SE vaccine formulation. The present report describes the lyophilization process development and scale-up of the lead candidate thermostable ID93 + GLA-SE composition. The manufacture of three full-scale engineering batches was followed by one batch made and released under current Good Manufacturing Practices (cGMP). Up to 4.5 years of stability data were collected. The cGMP lyophilized ID93 + GLA-SE passed all manufacturing release test criteria and maintained stability for at least 3 months when stored at 37°C and up to 24 months when stored at 5°C. This work represents the first advancement of a thermostable adjuvant-containing subunit tuberculosis vaccine to clinical testing readiness.

14.
Front Immunol ; 12: 683157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248966

RESUMO

Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.


Assuntos
Antígenos de Protozoários/imunologia , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/prevenção & controle , Vacinas Protozoárias/imunologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Fenômenos Químicos , Citocinas/metabolismo , Composição de Medicamentos , Entamebíase/parasitologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Lipossomos , Camundongos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/química , Vacinação
15.
Infect Immun ; 78(5): 2138-45, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160013

RESUMO

Proteins with tandem repeat (TR) domains have been found in various protozoan parasites, and they are often targets of B-cell responses. Through systematic analyses of whole proteomes, we recently demonstrated that two trypanosomatid parasites, Leishmania infantum and Trypanosoma cruzi, are rich in antigenic proteins with large TR domains. However, the reason that these proteins are antigenic was unclear. Here, by performing molecular, immunological, and bioinformatic characterizations of Leishmania TR proteins, we found two possible factors affecting the antigenicity of these proteins; one factor is their fundamental composition as TR proteins, and the other is regulation of their expression by parasites. Enzyme-linked immunosorbent assays (ELISAs) using recombinant proteins revealed that the copy number of the repeat affects the affinity of binding between antigens and antibodies, as expected based on thermodynamic binding kinetics. Other than containing TR domains, the TR proteins do not share characteristics, such as sequence similarity or biased cellular location predicted by the presence of a signal sequence(s) and/or a transmembrane domain(s). However, the TR proteome contained a higher percentage of proteins upregulated in amastigotes than the whole proteome, and upregulated expression of a TR protein seemed to affect its antigenicity. These results indicate that Leishmania parasites actively utilize the TR protein family for parasitism in mammalian hosts.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Regulação da Expressão Gênica , Leishmania infantum/imunologia , Leishmania major/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Dados de Sequência Molecular , Proteínas de Protozoários/biossíntese , Sequências Repetitivas de Aminoácidos , Sequências de Repetição em Tandem
16.
J Immunol ; 181(11): 7948-57, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017986

RESUMO

Development of a subunit vaccine for Mycobacterium tuberculosis (Mtb) depends on the identification of Ags that induce appropriate T cell responses. Using bioinformatics, we selected a panel of 94 Mtb genes based on criteria that included growth in macrophages, up- or down-regulation under hypoxic conditions, secretion, membrane association, or because they were members of the PE/PPE or EsX families. Recombinant proteins encoded by these genes were evaluated for IFN-gamma recall responses using PBMCs from healthy subjects previously exposed to Mtb. From this screen, dominant human T cell Ags were identified and 49 of these proteins, formulated in CpG, were evaluated as vaccine candidates in a mouse model of tuberculosis. Eighteen of the individual Ags conferred partial protection against challenge with virulent Mtb. A combination of three of these Ags further increased protection against Mtb to levels comparable to those achieved with bacillus Calmette-Guérin vaccination. Vaccine candidates that led to reduction in lung bacterial burden following challenge-induced pluripotent CD4 and CD8 T cells, including Th1 cell responses characterized by elevated levels of Ag-specific IgG2c, IFN-gamma, and TNF. Priority vaccine Ags elicited pluripotent CD4 and CD8 T responses in purified protein derivative-positive donor PBMCs. This study identified numerous novel human T cell Ags suitable to be included in subunit vaccines against tuberculosis.


Assuntos
Antígenos de Bactérias/farmacologia , Linfócitos T CD8-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose Pulmonar/imunologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Camundongos , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Fator de Necrose Tumoral alfa/imunologia
17.
Phytomedicine ; 64: 152927, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31465981

RESUMO

BACKGROUND: Next to aluminum salts, squalene nanoemulsions comprise the most widely employed class of adjuvants in approved vaccines. Despite their importance, the mechanisms of action of squalene nanoemulsions are not completely understood, nor are the structure/function requirements of the oil composition. PURPOSE: In this study, we build on previous work that compared the adjuvant properties of nanoemulsions made with different classes of oil structures to squalene nanoemulsion. Here, we introduce nanoemulsions made with polyprenols derived from species of the Pinaceae family as novel vaccine adjuvant compositions. In contrast with long-chain triglycerides that do not efficiently enhance an immune response, both polyprenols and squalene are comprised of multimeric isoprene units, which may represent an important structural property of oils in nanoemulsions with adjuvant properties. STUDY DESIGN: Oils derived from species of the Pinaceae family were formulated in nanoemulsions, with or without a synthetic Toll-like receptor 4 (TLR4) ligand, and characterized regarding physicochemical and biological activity properties in comparison to squalene nanoemulsions. METHODS: Oils were extracted from species of the Pinaceae family and used to prepare oil-in-water nanoemulsions by microfluidization. Emulsion droplet diameter stability was characterized by dynamic light scattering. Nanoemulsions were evaluated for in vitro biological activity using human whole blood, and in vivo biological activity in mouse, pig, and ferret models when combined with pandemic influenza vaccine antigens. RESULTS: Nanoemulsions comprised of Pinaceae-derived polyprenol oils demonstrated long-term physical stability, stimulated cytokine production from human cells in vitro, and promoted antigen-specific immune responses in various animal models, particularly when formulated with the TLR4 ligand glucopyranosyl lipid adjuvant (GLA). CONCLUSION: Pinaceae-derived nanoemulsions are compatible with inclusion of a synthetic TLR4 ligand and promote antigen-specific immune responses to pandemic influenza antigens in mouse, pig, and ferret models.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Pinaceae/química , Óleos de Plantas/farmacologia , Poliprenois/farmacologia , Esqualeno/farmacologia , Adjuvantes Imunológicos/química , Animais , Emulsões , Feminino , Furões , Humanos , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óleos de Plantas/química , Poliprenois/química , Organismos Livres de Patógenos Específicos , Esqualeno/química , Suínos , Receptor 4 Toll-Like/imunologia
18.
Front Immunol ; 9: 295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515589

RESUMO

Elderly people are at high risk for influenza-related morbidity and mortality due to progressive immunosenescence. While toll-like receptor (TLR) agonist containing adjuvants, and other adjuvants, have been shown to enhance influenza vaccine-induced protective responses, the mechanisms underlying how these adjuvanted vaccines could benefit the elderly remain elusive. Here, we show that a split H1N1 influenza vaccine (sH1N1) combined with a TLR4 agonist, glucopyranosyl lipid adjuvant formulated in a stable oil-in-water emulsion (GLA-SE), boosts IgG2c:IgG1 ratios, enhances hemagglutination inhibition (HAI) titers, and increases protection in aged mice. We find that all adjuvanted sH1N1 vaccines tested were able to protect both young and aged mice from lethal A/H1N1/California/4/2009 virus challenge after two immunizations compared to vaccine alone. We show that GLA-SE combined with sH1N1, however, also provides enhanced protection from morbidity in aged mice given one immunization (based on change in weight percentage). While the GLA-SE-adjuvanted sH1N1 vaccine promotes the generation of cytokine-producing T helper 1 cells, germinal center B cells, and long-lived bone marrow plasma cells in young mice, these responses were muted in aged mice. Differential in vitro responses, dependent on age, were also observed from mouse-derived bone marrow-derived dendritic cells and lung homogenates following stimulation with adjuvants, including GLA-SE. Besides enhanced HAI titers, additional protective factors elicited with sH1N1 + GLA-SE in young mice were observed, including (a) rapid reduction of viral titers in the lung, (b) prevention of excessive lung inflammation, and (c) homeostatic maintenance of alveolar macrophages (AMs) following H1N1 infection. Collectively, our results provide insight into mechanisms of adjuvant-mediated immune protection in the young and elderly.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Idoso , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Células Dendríticas/virologia , Feminino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Imunidade , Imunização , Lipídeo A/farmacologia , Lipídeo A/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/agonistas
19.
NPJ Vaccines ; 3: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900011

RESUMO

Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1ß, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.

20.
Clin Transl Immunology ; 5(11): e108, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27990284

RESUMO

Adjuvants are combined with vaccine antigens to enhance and modify immune responses, and have historically been primarily crude, undefined entities. Introducing toll-like receptor (TLR) ligands has led to a new generation of adjuvants, with TLR4 ligands being the most extensively used in human vaccines. The TLR4 crystal structures demonstrate extensive contact with their ligands and provide clues as to how they discriminate a broad array of molecules and activate or attenuate innate, as well as adaptive, responses resulting from these interactions. Leveraging this discerning ability, we made subtle chemical alterations to the structure of a synthetic monophosphoryl lipid-A molecule to produce SLA, a designer TLR4 ligand that had a number of desirable adjuvant effects. The SLA molecule stimulated human TLR4 and induced Th1 biasing cytokines and chemokines. On human cells, the activity of SLA plateaued at lower concentrations than the lipid A comparator, and induced cytokine profiles distinct from other known TLR4 agonists, indicating the potential for superior adjuvant performance. SLA was formulated in an oil-in-water emulsion, producing an adjuvant that elicited potent Th1-biased adaptive responses. This was verified using a recombinant Leishmania vaccine antigen, first in mice, then in a clinical study in which the antigen-specific Th1-biased responses observed in mice were recapitulated in humans. These results demonstrated that using structure-based approaches one can predictably design and produce modern adjuvant formulations for safe and effective human vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA