Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Technol ; 56(1): 175-184, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34898191

RESUMO

Biogenic volatile organic compound (BVOC) emissions have long been known to play vital roles in modulating the formation of ozone and secondary organic aerosols (SOAs). While early studies have evaluated their impact globally or regionally, the BVOC emissions emitted from urban green spaces (denoted as U-BVOC emissions) have been largely ignored primarily due to the failure of low-resolution land cover in resolving such processes, but also because their important contribution to urban BVOCs was previously unrecognized. In this study, by utilizing a recently released high-resolution land cover dataset, we develop the first set of emission inventories of U-BVOCs in China at spatial resolutions as high as 1 km. This new dataset resolved densely distributed U-BVOCs in urban core areas. The U-BVOC emissions in megacities could account for a large fraction of total BVOC emissions, and the good agreement of the interannual variations between the U-BVOC emissions and ozone concentrations over certain regions stresses their potentially crucial role in influencing ozone variations. The newly constructed U-BVOC emission inventory is expected to provide an improved dataset to enable the research community to re-examine the modulation of BVOCs on the formation of ozone, SOA, and atmospheric chemistry in urban environments.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Ozônio/análise , Parques Recreativos
2.
Environ Sci Technol ; 56(17): 12667-12677, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35649120

RESUMO

Volatile organic compounds (VOCs) emitted from forests are important chemical components that affect ecosystem functioning, atmospheric chemistry, and regional climate. Temperature differences between a forest and an adjacent river can induce winds that influence VOC fate and transport. Quantitative observations and scientific understanding, however, remain lacking. Herein, daytime VOC datasets were collected from the surface up to 500 m over the "Rio Negro" river in Amazonia. During time periods of river winds, isoprene, α-pinene, and ß-pinene concentrations increased by 50, 60, and 80% over the river, respectively. The concentrations at 500 m were up to 80% greater compared to those at 100 m because of the transport path of river winds. By comparison, the concentration of methacrolein, a VOC oxidation product, did not depend on river winds or height. The differing observations for primary emissions and oxidation products can be explained by the coupling of timescales among emission, reaction, and transport. This behavior was captured in large-eddy simulations with a coupled chemistry model. The observed and simulated roles of river winds in VOC fate and transport highlight the need for improved representation of these processes in regional models of air quality and chemistry-climate coupling.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Ecossistema , Florestas , Rios , Vento
3.
Proc Natl Acad Sci U S A ; 116(39): 19318-19323, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501347

RESUMO

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Assuntos
Atmosfera/química , Butadienos/análise , Florestas , Hemiterpenos/análise , Compostos Orgânicos Voláteis/análise , Brasil , Estações do Ano , Árvores/classificação , Árvores/fisiologia
4.
Faraday Discuss ; 226: 537-550, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346290

RESUMO

We present trace gas vertical profiles observed by instruments on the NASA DC-8 and at a ground site during the Korea-US air quality study (KORUS) field campaign in May to June 2016. We focus on the region near the Seoul metropolitan area and its surroundings where both anthropogenic and natural emission sources play an important role in local photochemistry. Integrating ground and airborne observations is the major research goal of many atmospheric chemistry field campaigns. Although airborne platforms typically aim to sample from near surface to the free troposphere, it is difficult to fly very close to the surface especially in environments with complex terrain or a populated area. A detailed analysis integrating ground and airborne observations associated with specific concentration footprints indicates that reactive trace gases are quickly oxidized below an altitude of 700 m. The total OH reactivity profile has a rapid decay in the lower part of troposphere from surface to the lowest altitude (700 m) sampled by the NASA DC-8. The decay rate is close to that of very reactive biogenic volatile organic compounds such as monoterpenes. Therefore, we argue that photochemical processes in the bottom of the boundary layer, below the typical altitude of aircraft sampling, should be thoroughly investigated to properly assess ozone and secondary aerosol formation.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Florestas , Ozônio/análise , Seul
5.
Rev Geophys ; 58(1)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33748825

RESUMO

Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

6.
Environ Sci Technol ; 54(23): 14923-14935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205951

RESUMO

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.8 µgCsm-3) than in Centreville (36.5 µgCsm-3). However, the OH reactivity (OHR) measured at these sites is similar (20.1 and 19.3 s-1). The shortfall in OHR when summing up measured contributions is 31%, at Pasadena and 14% at Centreville, suggesting that there may be a larger reservoir of unmeasured ROC at the former site. Estimated O3 production and SOA potential (defined as concentration × yield) are both higher during CalNex than SOAS. This analysis suggests that the ROC in urban California is less reactive, but due to higher concentrations of oxides of nitrogen and hydroxyl radicals, is more efficient in terms of O3 and SOA production, than in the forested southeastern U.S.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , California , Carbono , Ozônio/análise , Sudeste dos Estados Unidos
7.
Proc Natl Acad Sci U S A ; 113(22): 6125-30, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185928

RESUMO

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.


Assuntos
Poluentes Atmosféricos/análise , Butadienos/química , Radicais Livres/análise , Hemiterpenos/química , Óxido Nítrico/química , Pentanos/química , Fotoquímica , Floresta Úmida , Acroleína/análogos & derivados , Acroleína/análise , Atmosfera , Butadienos/efeitos da radiação , Butanonas/análise , Hemiterpenos/efeitos da radiação , Humanos , Oxirredução , Pentanos/efeitos da radiação , Peróxidos/química
8.
Proc Natl Acad Sci U S A ; 113(21): 5781-90, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27222566

RESUMO

The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

9.
Proc Natl Acad Sci U S A ; 112(23): 7123-8, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26015574

RESUMO

Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.


Assuntos
Poluentes Atmosféricos/química , Compostos Orgânicos Voláteis/síntese química , Atmosfera , Modelos Teóricos , Ozônio/química
11.
Sci Total Environ ; 828: 154218, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245546

RESUMO

Natural emissions play a key role in modulating the formation of ground-level ozone (O3), especially emissions of biogenic volatile organic compounds (BVOCs) and soil nitric oxide (SNO), and their individual effects on O3 formation have been previously quantified and evaluated. However, their synergistic effects remain unclear and have not yet been well assessed. By applying the Weather Research and Forecasting (WRF) model coupled with the Chemistry-Model of Emissions of Gases and Aerosols from Nature (WRF/Chem-MEGAN) model, this study reveals that in the presence of sufficient BVOC emissions, which act as a fuel, SNO emissions act as a fuel additive and promote the chemical reactions of BVOCs and the subsequent production of O3. Consequently, the synergistic effects of BVOC and SNO emissions on summertime O3 production surpassed the sum of their individual effects by as much as 10-20 µg m-3 in eastern China in 2014. In order to reduce O3 concentration to a level corresponding to no natural emissions of BVOC or SNO (i.e., the BASE scenario), the anthropogenic volatile organic compound (AVOC) emissions in the scenario considers BVOC and SNO emissions must be reduced by 1.76 times that of the BASE scenario. This study demonstrates that the synergistic effects of BVOC and SNO emissions can impede ground-level O3 regulation and can subsequently impose stricter requirements on anthropogenic precursor emission control in China. The results of this study can also inform efforts in other regions that are still combating ground-level O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Óxido Nítrico , Ozônio/análise , Solo , Compostos Orgânicos Voláteis/análise
12.
Environ Pollut ; 305: 119254, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390419

RESUMO

Mitigation of ambient ozone (O3) pollution is a great challenge because it depends heavily on the background O3 which has been poorly evaluated in many regions, including in China. By establishing the relationship between O3 and air temperature near the surface, the mean background O3 mixing ratios in the clean and polluted seasons were determined to be 35-40 and 50-55 ppbv in China during 2013-2019, respectively. Simulations using the chemical transport model (i.e., the Weather Research and Forecasting coupled with Chemistry model, WRF/Chem) suggested that biogenic volatile organic compounds (VOC) emissions were the primary contributor to the increase in the background O3 in the polluted season (BOP) compared to the background O3 in the clean season (BOC), ranging from 8 ppbv to 16 ppbv. More importantly, the BOP continuously increased at a rate of 0.6-8.0 ppbv yr-1 during 2013-2019, while the non-BOP stopped increasing after 2017. Consequently, an additional 2%-16% reduction in anthropogenic VOC emissions is required to reverse the current O3 back to that measured in the period from 2013 to 2017. The results of this study emphasize the importance of the relative contribution of the background O3 to the observed total O3 concentration in the design of anthropogenic precursor emission control strategies for the attainment of O3 standards.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental/métodos , Ozônio/análise , Compostos Orgânicos Voláteis/análise
13.
J Adv Model Earth Syst ; 14(12): e2022MS003174, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37035629

RESUMO

We introduce two new drought stress algorithms designed to simulate isoprene emission with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) model. The two approaches include the representation of the impact of drought on isoprene emission with a simple empirical approach for offline MEGAN applications and a more process-based approach for online MEGAN in Community Land Model (CLM) simulations. The two versions differ in their implementation of leaf-temperature impacts of mild drought. For the online version of MEGAN that is coupled to CLM, the impact of drought on leaf temperature is simulated directly and the calculated leaf temperature is considered for the estimation of isoprene emission. For the offline version, we apply an empirical algorithm derived from whole-canopy flux measurements for simulating the impact of drought ranging from mild to severe stage. In addition, the offline approach adopts the ratio (f PET) of actual evapotranspiration to potential evapotranspiration to quantify the severity of drought instead of using soil moisture. We applied the two algorithms in the CLM-CAM-chem (the Community Atmosphere Model with Chemistry) model to simulate the impact of drought on isoprene emission and found that drought can decrease isoprene emission globally by 11% in 2012. We further compared the formaldehyde (HCHO) vertical column density simulated by CAM-chem to satellite HCHO observations. We found that the proposed drought algorithm can improve the match with the HCHO observations during droughts, but the performance of the drought algorithm is limited by the capacity of the model to capture the severity of drought.

14.
Tree Physiol ; 28(4): 491-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18244936

RESUMO

Most work on methane (CH(4)) emissions from natural ecosystems has focused on wetlands because they are hotspots of CH(4) production. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH(4). Here we review CH(4) production and emissions in upland ecosystems, with attention to the influence of plant physiology on these processes in forests. Upland ecosystems are normally net sinks for atmospheric CH(4) because rates of CH(4) consumption exceed CH(4) production. Production of CH(4) in upland soils occurs in microsites and may be common in upland forest soils. Some forests switch from being CH(4) sinks to CH(4) sources depending on soil water content. Plant physiology influences CH(4) cycling by modifying the availability of electron donors and acceptors in forest soils. Plants are the ultimate source of organic carbon (electron donor) that microbes process into CH(4). The availability of O(2) (electron acceptor) is sensitive to changes in soil water content, and therefore, to transpiration rates. Recently, abiotic production of CH(4) from aerobic plant tissue was proposed, but has not yet been verified with independent data. If confirmed, this new source is likely to be a minor term in the global CH(4) budget, but important to quantify for purposes of greenhouse gas accounting. A variety of observations suggest that our understanding of CH(4) sources in upland systems is incomplete, particularly in tropical forests which are stronger sources then expected.


Assuntos
Ecossistema , Metano/análise , Solo , Árvores , Aerobiose , Efeito Estufa , Árvores/fisiologia
15.
Chemosphere ; 72(3): 365-80, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18471857

RESUMO

The focus of the studies presented in the preceding companion paper (Part A: Review) and here (Part B: Applications) is on defining representative emission rates from vegetation for determining the roles of biogenic volatile organic compound (BVOC) emissions in atmospheric chemistry and aerosol processes. The review of previously published procedures for identifying and quantifying BVOC emissions has revealed a wide variety of experimental methods used by various researchers. Experimental details become increasingly critical for quantitative emission measurements of low volatility monoterpenes (MT) and sesquiterpenes (SQT). These compounds are prone to be lost inadvertently by uptake to materials in contact with the sample air or by reactions with atmospheric oxidants. These losses become more prominent with higher molecular weight compounds, potentially leading to an underestimation of their emission rates. We present MT and SQT emission rate data from numerous experiments that include 23 deciduous tree species, 14 coniferous tree species, 8 crops, and 2 shrubs. These data indicate total, normalized (30 degrees C) basal emission rates from <10 to 5600ngCg(-1)h(-1) for MT, and from <10 to 1150ngCg(-1)h(-1) for SQT compounds. Both MT and SQT emissions have exponential dependencies on temperature (i.e. rates are proportional to e(betaT)). The inter-quartile range of beta-values for MT was between 0.12 and 0.17K(-1), which is higher than the value commonly used in models (0.09K(-1)). However many of the MT emissions also exhibited light dependencies, making it difficult to separate light and temperature influences. The primary light-dependent MT was ocimene, whose emissions were up to a factor of 10 higher than light-independent MT emissions. The inner-quartile range of beta-values for SQT was between 0.15 and 0.21K(-1).


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Butadienos/análise , Cromatografia Gasosa , Monitoramento Ambiental/instrumentação , Hemiterpenos/análise , Monoterpenos/análise , Pentanos/análise , Sesquiterpenos/análise , Temperatura , Volatilização
16.
Sci Adv ; 4(4): eaar2547, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651460

RESUMO

Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 106 to 1.6 × 106 cm-3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.

17.
Nat Commun ; 8: 15541, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534494

RESUMO

Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest. We report isoprene emission rates that are three times higher than satellite top-down estimates and 35% higher than model predictions. The results reveal strong correlations between observed isoprene emission rates and terrain elevations, which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can substantially explain isoprene emission variability in tropical forests, and use a model to demonstrate the resulting impacts on regional air quality.

18.
Sci Total Environ ; 565: 730-741, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27232720

RESUMO

Emissions of Biogenic Volatile Organic Compounds (BVOCs) observed during 2007 from an experimental Pinus taeda plantation in Central North Carolina are compared with model estimates from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1. Relaxed eddy accumulation (REA) estimates of 2-methyl-3-buten-2-ol (MBO) fluxes are a factor of 3-4 higher than MEGAN estimates. MEGAN monoterpene emission estimates were a factor of approximately two higher than REA flux measurements. MEGAN ß-caryophyllene emission estimates were within 60% of growing season REA flux estimates but were several times higher than REA fluxes during cooler, dormant season periods. The sum of other sesquiterpene emissions estimated by MEGAN was several times higher than REA estimates throughout the year. Model components are examined to understand these discrepancies. Measured summertime leaf area index (LAI) (and therefore foliar biomass) is a factor of two higher than assumed in MEGAN for the P. taeda default. Increasing the canopy mean MBO emission factor from 0.35 to 1.0mgm(-2)h(-1) also reduces MEGAN vs. REA flux differences. This increase is within current MBO emission factor uncertainties. The algorithm within MEGAN which adjusts isoprene emission estimates as a function of the temperature and light of the previous 24h seems also to improve the seasonal MEGAN MBO correlation with REA fluxes. Including the effects of the previous 240h, however, seems to degrade temporal model correlation with fluxes. Monoterpene and sesquiterpene composition data from the REA are compared with MEGAN2.1 estimates and also branch enclosure and needle extract data collected at this site. To our knowledge, the flux data presented here are the first reported for MBO and sesquiterpenes from a P. taeda ecosystem.


Assuntos
Agricultura Florestal , Pinus taeda/metabolismo , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Florestas , Monoterpenos/metabolismo , North Carolina , Pentanóis/metabolismo , Sesquiterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA