Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurotrauma ; 40(17-18): 1889-1906, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37130044

RESUMO

To date, no drug therapy has shown significant efficacy in improving functional outcomes in patients with acute spinal cord injury (SCI). Riluzole is an approved benzothiazole sodium channel blocker to attenuate neurodegeneration in amyotrophic lateral sclerosis (ALS) and is of interest for neuroprotection in SCI. In a Phase I clinical trial (ClinicalTrials.gov Identifier: NCT00876889), riluzole was well tolerated with a 2-week treatment at the dose level approved for ALS and exhibited potential efficacy in patients with SCI. The acute and progressive nature of traumatic SCI and the complexity of secondary injury processes alter the pharmacokinetics (PK) of therapeutics. In the PK sub-study of the multi-center, randomized, placebo-controlled, double-blinded Riluzole in Spinal Cord Injury Study (RISCIS) Phase II/III trial (ClinicalTrials.gov Identifier: NCT01597518), a total of 32 SCI patients were enrolled, and most of our patients were middle-age Caucasian males with head and neck injuries. We studied the PK and pharmacodynamics (PD) of riluzole on motor recovery, measured by International Standards for Neurological Classification of SCI (ISNCSCI) Motor Score at injury and at 3-month and 6-month follow-ups, along with levels of the axonal injury biomarker phosphorylated neurofilament heavy chain (pNF-H), during the 2-week treatment. PK modeling, PK/PD correlations were developed to identify the potential effective exposure of riluzole for intended PD outcomes. The longitudinal impacts of SCI on the PK of riluzole are characterized. A time-varying population PK model of riluzole is established, incorporating time-varying clearance and volume of distribution from combined data of Phase I and Phase II/III trials. With the developed model, a rational, optimal dosing scheme can be designed with time-dependent modification to preserve the required therapeutic exposure of riluzole. The PD of riluzole and the relationship between PK and neurological outcomes of the treatment were established. The time course of efficacy in total motor score improvement (ΔTMS) and pNF-H were monitored. A three-dimensional (3D) PK/PD correlation was established for ΔTMS at 6 months with overall riluzole exposure area under the curve for Day 0-Day14 (AUCD0-D14) and baseline TMS for individual patients. Patients with baseline TMS between 1 and 36 benefited from the optimal exposure range of 16-48 mg*h/mL. The PD models of pNF-H revealed the riluzole efficacy, as treated subjects exhibited a diminished increase in progression of pNF-H, indicative of reduced axonal breakdown. The independent parameter of area between effective curves (ABEC) between the time profiles of pNF-H in placebo and treatment groups was statistically identified as a significant predictor for the treatment effect on the biomarker. A mechanistic clinical outcomes (CO)/PD (pNF-H) model was established, and the proposed structure demonstrated the feasibility of PK/PD/CO correlation model. No appreciable hepatic toxicity was observed with the current riluzole treatment regimen. The development of effective treatment for SCI is challenging. However, the future model-informed and PK-guided drug development and regimen modification can be rationally executed with the optimal dosing regimen design based on the developed 3D PK/PD model. The PK/PD/CO model can serve as a rational guide for future drug development, PKPD model refinement, and extension to other studies in SCI settings.


Assuntos
Esclerose Lateral Amiotrófica , Medula Cervical , Lesões do Pescoço , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Masculino , Pessoa de Meia-Idade , Humanos , Riluzol/efeitos adversos , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacocinética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Lesões do Pescoço/tratamento farmacológico
2.
Neurotrauma Rep ; 1(1): 78-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223533

RESUMO

Convincing clinical evidence exists to support early surgical decompression in the setting of cervical spinal cord injury (SCI). However, clinical evidence on the effect of early surgery in patients with thoracic and thoracolumbar (from T1 to L1 [T1-L1]) SCI is lacking and a critical knowledge gap remains. This randomized controlled trial (RCT) sought to evaluate the safety and efficacy of early (<24 h) compared with late (24-72 h) decompressive surgery after T1-L1 SCI. From 2010 to 2018, patients (≥16 years of age) with acute T1-L1 SCI presenting to a single trauma center were randomized to receive either early (<24 h) or late (24-72 h) surgical decompression. The primary outcome was an ordinal change in American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade at 12-month follow-up. Secondary outcomes included complications and change in ASIA motor score (AMS) at 12 months. Outcome assessors were blinded to treatment assignment. Of 73 individuals whose treatment followed the study protocol, 37 received early surgery and 36 underwent late surgery. The mean age was 29.74 ± 11.4 years. In the early group 45.9% of patients and in the late group 33.3% of patients had a ≥1-grade improvement in AIS (odds ratio [OR] 1.70, 95% confidence interval [CI]: 0.66-4.39, p = 0.271); significantly more patients in the early (24.3%) than late (5.6%) surgery group had a ≥2-grade improvement in AIS (OR 5.46, 95% CI: 1.09-27.38, p = 0.025). There was no statistically significant difference in the secondary outcome measures. Surgical decompression within 24 h of acute traumatic T1-L1 SCI is safe and is associated with improved neurological outcome, defined as at least a 2-grade improvement in AIS at 12 months.

4.
eNeuro ; 2(2)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023683

RESUMO

The histological assessment of spinal cord tissue in three dimensions has previously been very time consuming and prone to errors of interpretation. Advances in tissue clearing have significantly improved visualization of fluorescently labelled axons. While recent proof-of-concept studies have been performed with transgenic mice in which axons were prelabeled with GFP, investigating axonal regeneration requires stringent axonal tracing methods as well as the use of animal models in which transgenic axonal labeling is not available. Using rodent models of spinal cord injury, we labeled axon tracts of interest using both adeno-associated virus and chemical tracers and performed tetrahydrofuran-based tissue clearing to image multiple axon types in spinal cords using light sheet and confocal microscopy. Using this approach, we investigated the relationships between axons and scar-forming cells at the injury site as well as connections between sensory axons and motor pools in the spinal cord. In addition, we used these methods to trace axons in nonhuman primates. This reproducible and adaptable virus-based approach can be combined with transgenic mice or with chemical-based tract-tracing methods, providing scientists with flexibility in obtaining axonal trajectory information from transparent tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA